Agilent Technologies
E8481A 2-Wire 4x32
Relay Matrix Switch Module

User’s Manual

~5%- Agilent Technologies

Manual Part Number: E8481-90001
Printed in U.S.A. E0301

Contents
Agilent E8481A User’s Manual

AGILENT TECHNOLOGIES WARRANTY STATEMENTccoooviviiinereereiee 7
SAfELY SYMBOIS.......eiiiici ettt naenae it 8
WARNINGS s e s e et e et e ete e sbeeenbeeenneeenee s 8
Declaration Of CONfOrMILYcccieiiiiiiiiie et e e sraere e 9
Chapter 1
(1= AT e S T 1= o [T 11
ADOUL ThiS Chapter.......c.eecieiece et srenne s 11
Agilent EB481A Module DESCIPLiONcceeveeiie ettt e 11
Simplified SChEMELICccoeeieece e 11
g Tox L0 1Y oo =R 12
I/ ooz I @0 11 To 0] = o o S 12
INStrUMENt DEfINITION.ccuiiiiicieice s 13
Programming the MOTUIE...........cceiiiee e e 13
Specifying SCPI COMMANGSccoeviiieiieeiicee ettt see e 13
Channel AQAIESSEScoeiiiiieeee ettt aenne s 13
TR TR U= I @] = 4 o o PR 15
Example: Closing aChannel (HTBaSIC)ccoevveeeviieceeiee e 15
Example: Closing aChannel (C/CH+) ..o, 15
Chapter 2
Configuring thE M OTUIEoceeeee e s e e 17
F N oo LU B I FY O 17 o = 17
Warnings and CalLiONS...........ccvieieeiieie et ee et ae s re e testesaaeseesns 17
Setting the Logical AQUIESS........ccoiveeecece ettt 18
Setting the INtErrupt Priorityccece e e 19
Installing the Matrix Switch ModuleinaMainframe.........cccccveeeviviencci v ccee s, 20
CoNNECtiNg USEN INPULSeocveeiieiee et see st ste s ee e ee e ee st e e neesaeesreesreesnee e 21
(@0 010T=oi (0] 1= . 1107011 | S 21
Screw Type Terminal MOAUIEc.ooveeeieiiceecseee s 22
SMB Type Terminal MOdUIEcoooviiiiee e 23
WiringaTerminal MOAUIEc.cooeiiiieece e 24
Attaching a Terminal Module to the Matrix Moduleccccoveiievieeviincieesieeen, 26
Chapter 3
UsSiNgthe MatriX MOUUIEcoueeieee et s 27
ADOUL ThiS Chapter.......c.eeiieie ettt sresne s 27
Power-On and ReSet CONAIIONS.........c.uiiieirenisiree e 28
Module 1dentifiCaLIONcoieeeeee e see e 28
Example: Identifying Module (HTBESIC) ...cccccceevieeveeiee et 28
Example: Identifying Module (CICH+) ..o 29
Setting Module FUNCLION MOE.........covieee e 30
Example: Setting Function Mode (HTBASIC)ccceeveiieeieieieececeseese e 30
Example: Setting Function Mode (C/CH+) .o 31

SWILChING ChaNNELSoceeeeci et st re e aeere e 32

Example: Closing Multiple Channels (HTB&SIC)cccccevvveeievenieeie e, 32
Example: Closing Multiple Channels (C/CH+) .uviiiiiieiiereecee e 33
Using State Patterns to Switch Channels..........cccoeviiii e 34
Example: Using a State Pattern to Switch Channels (HTBasiC)ccccceeeeenene. 34
Example: Using a State Pattern to Switch Channels (C/C++)ccccvvviievieenenn, 35
SCanNiNG ChanNEIS.........cceoieece e et e 37
Example: Scanning Channels Using Trig InfOut POrtSccccoeeeveeiecc e, 37
Example: Scanning Channels Using TTL THQQEr ..cccooveveereevie e e evee e 42
Using the Scan ComPplete Bit.......coooeeieiiiecieieeree e 47
Example: Using the Scan Complete Bit (HTBESIC) ...ccoeveecveevieveecie e 47
Example: Using the Scan Complete Bit (C/CH+) ..ovvieevvieee e, 48
Querying the MatriX MOAUIE..........ccueiiii e s 49
Recalling and SaVving SEaLES........ccccciiieveie ettt 50
Example: Saving and Recalling Instrument State (HTBasIC)ccceceevvceevieenneene. 50
Detecting Error CoNditioNS........ccceceeiieniee e see et see e see e e ste s e e s s s sns 51
Example: Querying Errors (HTBESIC) ...coceevericeeiie et cee ettt 51
Synchronizing the INSLIUMENESocvieeecece e 51
Example: Synchronizing the Instruments (HTBaSIC)ccccovveevvriecieie e, 51
Chapter 4

ComMMANd REFEINENCE ..ot see e 53
0L oo T I TE 7= o = RS 53
(@0 4100700 [I8/ === OSSO 53
Common Command FOMMELccoeririeireririene e 53
SCPI ComMmMand FOMMIELccoviieririerieniiriese e 53
Linking COMMENGScccocveiiiiieciecee ettt et e e e e e 55
SCPI ComMMand REFEIENCEeeee et 55
N =T | TSRS 56
ARM bbbttt bt e bbb 57
ARMICOUNTL ..ttt sttt sttt st sbenbnne s 57
ARMICOUNIL? .ottt sttt st snennene s 58

[N € 0L oSS 59
DIAGNOStICINTETUPLLILINE] et 59
DIAGROStICINTETUPLLILINE]? et s e 60
DIAGNOStIC:TEST[:RELAYS]? ...ocveeveeieciieeeste sttt 60
DIAGNOStI C:TEST:SEEPIOM? ..ottt 61
DISPIAY ..ttt bt bbbt e 62
DISPIay:MONILOrCARDoooiieecececte ettt ettt sr e e 62
DISPIay:MONILOrCARD? ..ottt ettt et et re e e 62
DISPIay:MONILOI[:STATE] ..oeceeceiee et ree ettt ae et st sn e e 63
DISPIay:MONItOr[:STATE]? w.cveceeeee sttt s s 63

LN L = =PSSOSR 64
INITIALECONTINUOUSooeeierieeieriesieseeeteesie e e eee e see e e e seeseesneeneeneesneseeeneeseeseas 64
INITIGALE CONTINUOUS? ...c.eeeieeeeeieseesieseeetee et see et eeeseeste e eneeseesnesneeneeseenees 65

INITIGEE :TMMEIGLE] ..vvvveoeeeeeereeeeeeeeeeseeeeeeseeeeeeeeseeeseesseseeeeseeseeeesseseseessseeens 65

OUTPULECLTIGN[:STATE] ovveeeetieeee ettt sttt 66
OUTPULECLTIGN[:STATE]? ..ottt se s te ettt 67
OUTPULL:EXTENA][ISTATE] .ottt seseee e 67
OUTPULEXTENA[:STATE]? oot st ste e sree ettt 68
OUTPULTTLTIGNSTATE] oottt ettt 68
OUTPULTTLTIGNSTATE]? oottt ettt 69
RO I =] TSRS 70
[ROUTECLOSE ...ooiveieieeieeiiriesieieiesiesieseeessessessesseessessessanessessessesssnsessssessessenens 70
[ROUTEJCLOSE? ..ot ee s ees e es e e ees e een e een e 71
LR@ L8 = 5 1L 4 o o 72
[ROUTEJFUNGCLIONT ..ottt s 72
[ROUTEJOPEN ...ouiiiirieieiieiisie ettt sttt sttt st b e 73
[ROUTEJOPEN? ..ttt sttt sttt saeneas 73
[ROUTE]PATTEMACTIVAE ..o eeee e ee s s e een s enseans 74
[ROUTE]PATTEMACTIVAE?oeeeeeeeeeeeeeeeeee e e ee s 75
[ROUTE]PATTEMNICLOSE ...t sees s 75
[ROUTE]PATTEMICLOSE? ..ottt 76
[ROUTE]JPATTENINUMBEY ...t 77
[ROUTEJPATTENINUMBEI? ...ttt 77
[ROUTE]PATTEMNIOPEN ...t eee e een e 78
[ROUTE]PATTENIOPEN? ...t eee e se e en s 79
[ROUTE]ISCAN .ottt ees s en s ee s en s eeneans 80
ST ATUS. ettt r e e b se e e R R e e nre e r e nne e 81
STATUS:OPERation:CONDItION? ..o s 83
STATUS:OPER&ELION:ENABIE ...t s 83
STATUS:OPER&LION:ENABIE? ...ttt 83
STATUS:OPERGHON[:EVENL]? ...t 84
STATUSIPRESEL ..ottt e e e sree e e nnee e 84
) S 1= 1. PSSP 85
SY STEM:CDESCHPLIONT .ottt st s renne s 85
SYSTEMICPON ..ottt bttt e 85
) S 1= 10 O I == R 86
SYSTEMIERROI? ..ot re e e 86
SYSTEMIVERSIONT? ...ttt nne s 87
LI = TSRS 88
TRIGE:IMMEIAE]ocveiviiiee e 88
TRIGGENSOURCEeeiiiiieiieeiiee sttt sttt st st sbe e e sre e s beesneeas 89
TRIGGENSOURCE?eeee ettt eee et ee et e e ste e sate s s e e st e st e e snn e e sneeennee s 90
SCPI Command QUICK REFEFENCEcceeieeeeii e 91
|EEE 488.2 Common Command REFErENCe........cccovv e 93
Appendix A

ST AN o L=) Lo Lo < TS 95

Appendix B

Register-Based Programmingc.coceceiieieiieneeie et seeee e sae e sresaaessenne s 97
F N oo LU B I TE A 0] 1= 0 [S 97
RS 0TI = AN [0 (1=] oo 97

BASE AGUIESS ...ttt sttt ene e e 97
REGISLEr OFfSEL ... e 100
REQISLErS DESCITPLIONvveviti ettt st e e e aesneene s 101
ID REJISIEN ..ttt sttt sttt 102
DeVvice TYPE REJISIENcceiiee ettt e e et se e reesrae 102
Status/Control REQISLENccieeiee et e e s e esreesne s 102
Interrupt SEleCtion REQISLENccceeieecee e 104

Relay Control REQISLENScc.ociieeceiese ettt s 104
NVRAM CoNntrol REQISLENSccvveeeeeiieiiiie sttt 107

Appendix C

o gV =SS T =S 111

AGILENT TECHNOLOGIES WARRANTY STATEMENT
AGILENT PRODUCT: EB8481A 2-wire 4x32 Relay Matrix Switch Module DURATION OF WARRANTY: 3 years

1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defectsin material s and workmanship for the period
specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace
products which prove to be defective. Replacement products may be either new or like-new.

2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to
defectsin material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty
period, Agilent will replace software media which does not execute its programming instructions due to such defects.

3. Agilent does not warrant that the operation of Agilent productswill beinterrupted or error free. If Agilent isunable, within areasonable
time, to repair or replace any product to a condition as warranted, customer will be entitled to arefund of the purchase price upon prompt
return of the product.

4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.

5. The warranty period begins on the date of delivery or onthe date of installation if installed by Agilent. If customer schedulesor delays
Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

6. Warranty does not apply to defects resulting from (&) improper or inadequate maintenance or calibration, (b) software, interfacing, parts
or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental
specifications for the product, or (€) improper site preparation or maintenance.

7. TOTHE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER
WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, ISEXPRESSED OR IMPLIED AND AGILENT
SPECIFICALLY DISCLAIMSANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.

8. Agilent will beliable for damageto tangible property per incident up to the greater of $300,000 or the actual amount paid for the product
that isthe subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court
of competent jurisdiction to have been directly caused by a defective Agilent product.

9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIESIN THISWARRANTY STATEMENT ARE CUSTOMER'S
SOLE AND EXLUSIVE REMEDIES. EXCEPT ASINDICATED ABOVE, IN NOEVENT WILL AGILENT ORITS SUPPLIERSBE
LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR
DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

FOR CONSUMER TRANSACTIONSIN AUSTRALIA AND NEW ZEALAND: THEWARRANTY TERMSCONTAINED IN THIS
STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE
IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as"commercial
computer software” as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), asa"commercial item" asdefined in FAR 2.101(a), or as "Restricted computer software” as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. Y ou have only those rights provided for such
Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product
involved.

Agilent Technologies

E8481A 2-Wire 4x32 Relay Matrix Switch Module User’s Manual
Edition 1
Copyright © 2001 Agilent Technologies, Inc. All rights reserved.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition
number increments by 1 whenever the manual isrevised. Updates, which are issued between Editions, contain replacement pages to
correct or add additional information to the current Edition of the manual. Whenever anew Edition is created, it will contain all of the
Update information for the previous Edition. Each new Edition or Update also includes arevised copy of this documentation history page.

Edition 1 ... March, 2001

Safety Symbols
Instruction manual symbol affixed to

product. Indicates that the user must refer to /\/ Alternating current (AC)
the manual for specific WARNING or
CAUTION information to avoid personal —_— .
injury or damage to the product. - — - Direct current (DC).
& Warning. Risk of electrical shock.
Indicates the field wiring terminal that must

be connected to earth ground before

operating the equipment — protects against WARNING Calls attention to a procedure, practice, or

electrical shock in case of fault. condition that could cause bodily injury or
death.

Calls attention to a procedure, practice, or

I Frameor chassisground terminal—typically CAUTION i ;
/—Jﬁ or connects to the equipment's metal frame. ggﬂﬂ;ﬂ%%%?t gg?rwaﬁoei? |b cl))s/scc?? 3%?;111 ageto

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to
comply with these precautions or with specific warnings el sewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operatethe product in an explosive atmaosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT
use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of
covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous el ectrical shock, DO NOT perform proceduresinvolving cover or shield removal unlessyou
are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been
impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that
safety features are maintained.

DO NOT serviceor adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

DO NOT substitute partsor modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts
or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features
are maintained.

. Agilent Technologies DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer’s Name: Agilent Technologies, Inc.
Manufacturer’'s Address: Basic, Emerging and Systems Technologies Product Generation Unit

815 14™ Street S.W.
Loveland, CO 80537 USA

Declares, that the product

Product Name: Relay Matrix Switch Module
Model Number: E8481A
Product Options: This declaration includes all options of the above product(s).

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC
and carries the CE Marking accordingly.

Conforms with the following product standards:

EMC Standard Limit
IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998
CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A 1
IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4 kV CD, 8 kV AD
IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz
IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines
IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground
IEC 61000-4-6:1996 / EN 61000-4-6:1996 3V, 0.15-80 MHz
IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%

Canada: ICES-001:1998
Australia/New Zealand: AS/NZS 2064.1

Safety IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

Supplemental Information:

[1] The product was tested in a typical configuration with Agilent Technologies test systems.

ol

September 5, 2000

Date Name

Quality Manager

Title

For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Straf3e 130, D 71034 Boblingen, Germany

Revision: A.03 Issue Date: 09/05/00

Notes:

10

Chapter 1
Getting Started

About This Chapter

This chapter describes the Agilent EB481A 2-wire 4x32 Matrix module,
containsinformation on how to programit using SCPI (Standard Commands
for Programmable Instruments) commands, and provides an example
program to check initial operation. Chapter contents are:

® Agilent EB481A Module Description. 11
® Instrument Definition 13
® Programming the Matrix Module 13
® |nitial Operationt 15

Agilent E8481A Module Description

Simplified
Schematic

TheAgilent EB481A 4x32 2-wire Matrix SwitchmoduleisaV XIbusC-Size
register-based product which can operate in aC-Size V XIbus mainframe. It
offers highly flexible switching for testing devices, alowing multiple test
instruments connected to multiple test points on a device or to multiple
devices. It isideal for switching signals to the oscilloscopes, counters and
signal sourcesin the test systems.

To improve the switching throughput, an 8 kB non-volatile RAM
(NVRAM) is provided on the module, allowing to store up to 511 state
patternsfor all 128 channels of the module. See Page 107 of this manual for
more information on the module’s NVRAM and state patterns structure.

In addition to a single 2-wire 4x32 matrix, the E8481A can be easily
reconfigured as two independent 2-wire 4x16 matrixes. See “Function
Modes’ on page 12 for more information.

Asshownin Figure 1-1, two 2-wire 4x16 matrixes (Group A & Group B)
are implemented on the E8481A module PC board which contains 128
2-wire nodes or crosspoints. Each crosspoint in the matrix usestwo Form-A
non-latching relaysto switch both High (H) and Low (L) signals. By closing
or opening the appropriate channel relays, the row is connected to or
disconnected from the column. Multiple switch relays can be closed at a
time, allowing any combination of rows connected to columns.

Since the relays are nonlatching, the channd relays are all open during
power-up, power-down, or following a reset.

Chapter 1

Getting Started 11

A

Group A Column 00 - 15 Group B Column 16 - 31

A

Row 03

) - Y
Row 03

0300 0301 0302 0303 0304 0304 030§ 0307 030!
Row 02

0309 031Q 0311 0317 0313 0314 0315 0316 0317 031§ 0319 032(0321 0324 0323 0324 0324 0326 0327 032§ 0329 0330 0331

Row 02

0200 0201 0202 0209 0204 0205 020§ 0207 020!

) 9 9

0209 0214 0211 0212 0213 0214 0215 0216 0217 0214 0219 0220 0221 0227 0223 0224 0225 022§ 0221 022§ 0229 023¢ 0231

Row 01

0100 0101 0102 0103 0104 0105 010§ 0107 010!

Row 01

C
[

0109 0114 0111 0112 0113 0114 0115 0116| 0117/ 0118(0119 0129 0121 0122 0123 0124 012§ 012¢ 0127 012§ 0129 013 0131

J

Row 00
0009 0001 0002 0003 DODg‘l X EnQODG 0007 000§

\
 [hca

€00 CO1 CO2 CO3 CO4 CO5'\C06™CO7 CO8 CO9 C10 Cll Cl2 C13 Cl4 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31
\ ~.

Row 00

0009 001Q 0011} 0012 0013 0014 0015 0016 0017 001§ 0019 002¢ 0021 0024 0023 0024 0025 0026 0027 002§ 0029 0030 0031

Low

HIGH \

/ Low

000;

HOOO!
(Row 00, Column 05)

Figure 1-1. Agilent E8481A Simplified Schematic

Function Modes

NOTE

NOTE

Typical
Configuration

When shipped from the factory, the E8481A is configured as a4x32 2-wire
Matrix Switch module. All columns (00-31) are switched to rows (00-03) of
Group A with 50 MHz bandwidth. By disconnecting the rows of the Group
A and the Group B with SCPI command ([ROUTe:]FUNCtion), the module
can be reconfigured as two independent 4x16 matrixes. In such case,
columns 00-15 are switched to rows 00-03 of Group A, and columns 16-31
are switched to rows 00-03 of Group B with bandwidth up to 70 MHz.

For more information about the related SCPI commands, see
“[ROUTe:]FUNCtion” on page 72 of thismanual. Y ou can also change the
function mode by directly writing to the NVRAM Data Register of the
module, see “ Setting Module Function Mode” on page 109 of this manual
for details.

At power up/down or reset, the module will not change the function mode
set for it, unless another [ROUTe:JFUNCtion command is executed to
change the mode.

DO NOT make connections on the rows 00-03 connectors of Group B when
in the 4x32 configuration. These connectors are used only when in the Dual
4x16 configuration.

For a Standard Commands for Programmabl e Instruments (SCPI)
environment, one or more E8481A modules can be configured as a
switchbox instrument. For a switchbox instrument, all modules within the
instrument can be addressed using a single interface address.

12 Getting Started

Chapter 1

Instrument Definition

The plug-in modules installed in an Agilent mainframe or used with an
Agilent command module are treated as independent instruments, each
having a unique secondary GPIB address. Each instrument is also assigned
adedicated error queue, input and output buffers, status registers and, if
applicable, dedicated mainframe/command module memory space for
readings or data. An instrument may be composed of asingle plug-in
modul e (such as a counter) or multiple plug-in modules (for a switchbox or
scanning multimeter instrument).

Programming the Module

NOTE

Specifying SCPI
Commands

Channel Addresses

To program the module using SCPI commands, you must select the
controller language, interface address, and SCPI commands to be used. See
the C-Sze VXIbus System Configuration Guide for detailed interface
addressing and controller language information. For usesin other systemsor
mainframes, see the appropriate manuals. For more details of SCPI
commands applicable to the module, refer to Chapter 4 of this manual.

This section only discusses SCPI programming. The module can also be
programmed by writing directly to its registers. See Appendix B for details
on register programming.

To address specific channels within an E8481A module, you must specify
the appropriate SCPI command and matrix channel addresses. Table 1-1
lists the most commonly used commands. Refer to Chapter 4 of this manual
for a complete list of SCPI commands used for the matrix switch module.

Table 1-1. Commonly Used SCPI Commands

SCPI Commands Commands Description
CLOSe <channel_list> Closes the relay(s) specified.
OPEN <channel_list> Opens the relay(s) specified.
SCAN <channel_list> Closes a set of relays, one at a time.

Only valid channel addresses can be included in a channel_list. For the
E8481A, the channel address has the form of (@ssrrcc) where

ss = card number (01-99)
rr = row number of the matrix (00-03)
cc = column number of the matrix (00-31)

To specify achannel_list, use the form of:

® (@ssrrec) for asingle channel
® (@ssrree,ssrrec,...) for multiple channels

Chapter 1

Getting Started 13

® (@ssrrec:ssrrec) for sequential channels
® (@ssrrec:ssrree,ssrrec:ssrrec) for groups of sequential channels
® or any combination of the above.

NOTE Only valid channels can be accessed in a channel list or channel range.
Channel numbers can be entered in the channel_list in any random order.
However, the channel range must be from a lower channel number to a
higher channel number. For example, CLOS (@10000:10312) is
acceptable, but CLOS (@10312:10000) generates an error.

Card Number The card number (ss of the channel_list) identifies which module within a
switchbox will be addressed. The card number assigned depends on the
switch configuration used. Leading zeroes can be ignored for the card
number.

® Single-module Switchbox. In a single-module switchbox
configuration, the card number is always 01.

® Multiple-module Switchbox. In a multiple-module switchbox
configuration, modules are set to successive logical addresses. The
module with the lowest logical addressis always card number 01. The
modul e with the next successive logical addressis card number 02,
and so on. Figure 1-2 illustrates the card numbers and logical
addresses of atypical multiple-module switchbox installed in an
Adgilent C-Size mainframe with an Agilent command module.

Multiple-Module Switchbox Card Numbers
| ! I ! e T zc3 5957 Card Number 01
— — — O [[m [m mo . .
88 .\ mm m e, Matrix Switch Module
Command * Logical Address = 112
Module ~—|| TaY®moNID Secondary Address = 14
| &
U N A O A 01l Z2¢c3G9 7
“le | e |e Olc| I M i me Card Number 02
O I | L (N T L Matrix Switch Module
Q TaY®mOoNTD Logical Address = 113
a
Ol 2¢& %G9 ~
M | }7 }7 ~——— Pfl[d/lm e Card Number 03
[ﬁ] @] [ﬁ] L [(I I L Matrix Switch Module
e e oaoe Logical Address = 114
o —roed
I
Note: Physical placement of the module in the logical address
order is not required, but is recommended.

Figure 1-2. Card Numbers in a Multiple-modules Switchbox

14 Getting Started Chapter 1

Channel Number

Initial Operation

Example: Closing a
Channel (HTBasic)

Example: Closing a
Channel (C/C++)

The channel number (rrcc of the channel_list) identifieswhich relay on the
selected module will be addressed. The channel numbers are;

row number: rr = 00 - 03 (two digits)
column number: cc = 00 - 31 (two digits)

For example, CLOS (@10214) will close channel relays on row 02,
column 14 of an E8481A module.

Use the following example programs to perform the initial operation on the
E8481A module. To run the programs, an Agilent E1406A command
moduleisrequired. Also, you must download the E8481A SCPI driver into
the E1406A command moduleand havethe Agilent SICL Library, theVISA
extensions, and an Agilent 82350 GPIB card installed and properly
configured in your PC.

In the examples, the computer interfaces to the mainframe viaGPIB. The
GPIB interface select codeis 7, the GPIB primary address is 09, and the
E8481A moduleisat logical address 112 (secondary address = 112/8 = 14).
Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in the examples, see Chapter 4 of this manual.

Thisexample program waswritten in HTBasic programming language. The
program closes channel 0002, then queriesits state. The result isreturned to
the computer and displayed (“1" = channel closed, “0" = channel open).

10 DIM Ch_Stat$[20] ! Dimension a variable.

20 OUTPUT 70914; ™RST" ! Resets the module.

30 OUTPUT 70914; "CLOS (@10002)" I Close channel 10002.

40 OUTPUT 70914; "CLOS? (@10002)" ! Query channel 10002 closed
state.

50 ENTER 70914;Ch_Stat$ | Enter resultsinto Ch_stat$.

60 PRINT Ch_Stat$! Display results, “ 1" should be
returned.

70 END

This example program was developed and tested in M icrosoft® Visual C++
6.0 but should compile under any standard ANSI C compiler. The program
closes channel 0002, then queriesits state. The result is returned to the
computer and displayed (“1” = channel closed, “0” = channel open).

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 112, secondary addressis 14 */
#define INSTR_ADDR "GPIBO0::9::14::INSTR"

Chapter 1

Getting Started 15

int main()

{

ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM,; [* Resource manager session */
ViSession E8481A; /* Module session */

char state[10]; /* Channel state */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

[* Open the modul e instrument session */
errStatus = viOpen(ViRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Close channel 0002 */
errStatus = viPrintf(E8481A, "CLOS (@10002)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

I* Query state of channel 0002 */
errStatus = viQueryf(E8481A, "ROUT:CLOS? (@10002)\n", "%t",state);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Channel State is: %s\n",state);

* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

16 Getting Started Chapter 1

Chapter 2
Configuring the Module

About This Chapter

This chapter shows how to configure the Matrix Switch module for usein a
V Xlbus mainframe, install it in amainframe, and connect external wiring to
the matrix module. Chapter contents include:

® WarningsandCautions., 17
® SettingtheLogical Address 18
® Setting the Interrupt Priority 19
® |nstalling the Matrix Switch Modulein aMainframe. 20
® ConnectorsPiNOUtS 21
® Screw Type Terminal Module. 22
® SMB Type Terminal Module 23
® WiringaTerminalModule 24
® Attaching a Terminal Moduletothe Matrix 26

Warnings and Cautions

WARNING

Caution

SHOCK HAZARD. Only qualified, service-trained personnel who
are aware of the hazards involved should install, configure, or
remove the Matrix switch module. Remove all power sources
from the mainframe and installed modules before installing or
removing a module.

MAXIMUM INPUTS. The maximum voltage that can be applied
to any terminal is 42 Vdc or 30 V ac rms. The maximum current
that can be applied to any terminal is 0.5 A dc or ac peak. The
maximum power that can be applied to any terminal is 5 W or
5 VA (resistive). Exceeding any limit may damage the Matrix
Switch module.

STATIC ELECTRICITY. Static electricity is a major cause of
component failure. To prevent damage to the electrical
components in the matrix module, observe anti-static
technigues whenever removing or installing a module or
whenever working on a module.

Chapter 2

Configuring the Module

17

Setting the Logical Address

Thelogical address switch (LADDR) factory setting is 112. Valid address
valuesarefrom 1to 255. Refer to Figure 2-1 for the address switch position

and setting information.

NOTE The address switch selected value must be a multiple of 8 if the module is
the first module in a switchbox used with a VXlbus command module, and
being instructed by SCPI commands.

LT_]
50

eh3416=112
"v r—‘ ﬁ ".

(@)

ol m

2 —-[m
4ivCH
8|l
16 |~ <—
32 ol J<«—

64 o Ml J<—
128 |~

", Logical Address = 112

/D

Logical Address
Switch Location

Figure 2-1. Setting the Logical Address Switch

18 Configuring the Module

Chapter 2

Setting the Interrupt Priority

NOTE

The E8481A module generates an interrupt after a channel has been closed.
These interrupts are sent to, and acknowledgments are received from, the
command module (Agilent E1406A) viathe V XIbus backplane interrupt
lines.

For most applicationsthe default interrupt priority line should not haveto be
changed. Thisis because the VXIbusinterrupt lines have the same priority
and interrupt priority is established by installing modules in slots
numerically closest to the command module. Thus, slot 1 has a higher
priority than slot 2, slot 2 has a higher priority than slot 3, etc.

By default, the interrupt priority level isLevel 1. It can be set to any one of
the V X| backplane lines 1-7 (corresponding to Levels 1-7) either by sending
SCPI or directly writing to the Interrupt Selection Register. Level 1isthe
lowest priority and Level 7 isthe highest priority. The interrupt can also be
disabled at power-up, after a SY SRESET, or by sending SCPI or directly
writing to the Status/Control Register. See Page 59 of this manual for more
details of the related SCPI commands. For more information about register
writing, see “ Register-Based Programming” on page 97 of this manual.

Changing theinterrupt priority level is not recommended. DO NOT change
it unless specially instructed to do so. Refer to the E1406A Command
Module User’s Manual for more details.

Chapter 2

Configuring the Module 19

Installing the Matrix Switch Module in a Mainframe

The Agilent EB481A may beinstalled in any dot (except slot 0) inaC-size
V Xlbus mainframe. Refer to Figure 2-2 toinstall the modulein a
mainframe.

@ Set the extraction levers out.

@ Slide the module into any slot (except slot 0)
until the backplane connectors touch.

Seat the module into the
mainframe by pushing in
the extraction levers.

a Tighten the top and bottom screws
to secure the module to the
mainframe.

Q)

To remove the module from the mainframe,
reverse the procedure.

Figure 2-2. Installing the Matrix Switch Module in a VXIbus Mainframe

20 Configuring the Module Chapter 2

Connecting User Inputs

Connectors Pinout

The Agilent E8481A Matrix Switch module is not supplied with terminal
modul es which must be ordered separately. Two types of terminal modules
are available for the Agilent E8481A Matrix Switch module. Order Option
106 if ascrew typeterminal moduleisdesired. If an SMB terminal module
is desired, order Option 105. User inputs to the matrix switch module are
made via the Row and Column terminal connectors on these terminal
modules. The following sections provide the detailed information on the
modul €' s connectors pinout, the screw type terminal module and the SMB
terminal module, as well as on how to connect field wiring to the terminal
module.

Figure 2-3 showsthefront panel of the Agilent EB481A and the connectors
pinout which mates to the terminal module.

Figure 2-3. Agilent E8481A Matrix Switch Connectors Pinout

Group A
A B c
Pin1 —»o ROWA_OH Pin1 —»o» ROWA_OL Pin1 —>o NC
s CoL oL s COL_OH s NC
s coL_ il s COL_1H s NC
s NC s NC s NC
s coL_ 2L s COL_2H s NC
'Pml - -
s NC s NC s NC
s CcoL_sL s COL_3H s NC
o NC o NC o NC Group B
s COL 4L s COL_4H s NC
. s NC s NC s NC
see A B (o}
SN — s COL5L o COL_5H s NC
s Ne s Ne s Ne Pin1 —»o ROWB_OH Pin1 —»° ROWB OL Pinl —>o NC
Group A 4—— n . coLeL . coL_oH . Ne © COL_16L © COL_16H s NC
. s coL L s coL M s NC s COL_17L s COL_17H s NC
e o ROWA_IH o ROWA_1L s NC » Ne » Ne Ne
ree
B . NG . NG . NG s COL_18L s COL_18H s NC
vee o ROWA_2H s ROWA_2L s NC v NC v NC v NC
see R » coL sH . NG s COL_19L s COL_19H s NC
ree s s
- v coL oL s COL_OH s NC ° NC ° NC v Ne
B . NG . NG . NG s COL_20L s COL_20H s NC
[
— o COL_10L o COL_10H o NC o NC o NC o NC
ABC NG NG NG o COL_21L o COL_21H o NC
B B B
A s NC s NC s NC
! pin1 s COL 11l s COL_11H s NC
Phiw | aBcC v e e e s COL_22L s COL_22H s NC
. . .
] s coL_23L s COL_23H s NC
oo s CcoL_12L s CcoL_12L s NC = =
s © ROWB_1H » ROWB_1L s NC
e s NC s NC s NC I I NC
. . .
.. o COL_13L o COL_13H s NC
s s ROWB_2H s ROWB_2L s NC
: s NC s NC s NC
e s COL_14L s COL_14H s NC o COL_24L o COL_24H s NC
eee . .
Group B €—— [[ese s COL_25L s COL_25H s NC
: 12 s NC s NC s NC
.. s COL_15L s COL_15H s NC N N N
© CcoL_26L v COL_26H s NC
.. Pin32 — o ROWA_3H Pin32 —» o ROWA_3L Pin32 —»1 NC = —
: s NC s NC s NC
: s coL_27L s COL_27H s NC
.
. s NC s NC s NC
M
: s COL_28L s CcoL_28L s NC
M
. s NC s NC s NC
.
: s COL_29L s COL_29H s NC
e
s NC s NC s NC
s COL_30L s COL_30H s NC
s NC s NC s NC
s COL_31L s COL_31H s NC
Pin32 —» o ROWB_3H Pin32 —» o ROWB 3L Pin32 —»o NC

Chapter 2

Configuring the Module

21

Screw Type
Terminal Module

Figure 2-4 showsthe Option 106 screw type termina module connectors
and associated row/column designators.

-~

Mating to the J1 and J2 connectors
on the front panel of the E8481A

31 |

| 2 |

kdededed kdkdrdled o

o]_J

HL HL HL HL
COLO COL2 COL4 COL6

HL HL HL HL
COL9 COL1l COL13 COL15

] kdkdkded kdkdrdled

23
H L
ROWAO

HL HL HLHL
COLL COL3 COL5 COL7

HL HLHLHL
COL8 COL10 COL12 COL14

B3 63 &3
H L H L H L
ROWAL ROWA2 ROWA3

il N0

kdededrd kIkIeded

HL HL HL HL HL HL HL HL
COL16 COL18 COL20 COL22 COL25 COL27 COL29 COL31

eadpdedrd kIededed,

HL HLHLHL
COL24 COL26 COL28 COL30

HL HL HLHL
COL17 COL19 COL21 COL23

29 g3 B3 B3
H L H L H L H L
ROWBO ROWB1 ROWB2 ROWB3

Note: RowB 0-3 connectors are used only in Dual 4x16 configuration.

~

Figure 2-4. Screw Type Terminal Module

22 Configuring the Module

Chapter 2

SMB Type Terminal
Module

Figure 2-5 showsthe Option 105 SMB type terminal module connectors

and associated row/column designators. This SMB terminal module

provides a convenient way to connect the field wiring to the matrix switch

module via SMB cables.

Mating to the J1 and J2 connectors
on the front panel of the E8481A

I 1 I I 32 I

o o o o
UL
[=] 3 < ©)] pa|] 0 © © o N [t} ~ o =]

@) 24 3 7 2 33 1 23§ 9§ g5 8 810

3 8 8 3 83838 8 8 8 8 8 8 8 58

g

I [

i i
32 25 3 3 9 3 5 32§ 8 § 8 88
83838 8333 83828 8883

® © B

ROWAD ROWA1 ROWA2 ROWA3 ROWBO ROWB1 ROWB2 ROWB3

A\

Note: RowB 0-3 connectors are used only in Dual 4x16 configuration.

Figure 2-5. SMB Terminal Module

Chapter 2

Configuring the Module

23

Wiring a Terminal
Module

1. Remove Clear Cover

and Relase

A. Release Screws
B. Press Tab Forward

R 2. Remove and Retain Wiring Exit Panel

Remove 1 of the 3
wire exit panels

3. Make Connections

Screw Type

Tighten screw.

Use Wire .
/ Size 20-26 AWG \

Insert wire into terminal.

AN
AN
\

Align wire on SMB connector.
Attach it to the connector firmly.

4. Route Wiring

5. Replace Wiring Exit Panel

g

/" Cut required\‘

/" holes in panels \
for wire exit \

hole as small as

possible

\ ['0=00epye
\

'! Keep wiring exit panel

The following illustrations show how to connect field wiring to the screw
type or SMB type terminal module, and how to attach the terminal module

to the relay matrix switch module.

Figure 2-6. Wiring a Terminal Module (continued on next page)

Chapter 2

24 Configuring the Module

6. Replace Clear Cover

A. Hook in the top cover tabs onto the fixture.
B. Press down and tighten screws.

7. Attach the Terminal Module to the Matrix
(see Figure 2-7 for more information)

Use a small
screwdriver
to release the
two extraction

levels. =

E8481A
Module

9. Push in the Extraction Levers to Lock the
Terminal Module onto the Matrix Module

Extraction
Levers

Notes:

* Be sure the wires make good
connections on the terminal
modules.

* DO NOT make connections on
the RowB_0 through RowB_3
connectors when in 4x32 mode.

* To remove the terminal module
from the E8481A, use a small
screwdriver to release the two
extraction levels and push both
evels out simultaneously
to free it from the E8481A
Matrix Module.

Figure 2-6. Wiring a Terminal Module

Chapter 2

Configuring the Module

25

Attaching a Figure 2-7 shows how to attach aterminal module to the E8481A Relay
Terminal Module to Matrix Switch module.

the Matrix Module

\
@ Extend the Extraction Levels on the
Terminal Module.
Extraction Lever y
7
N
N
N
/ 5 %
w & 7
Use a small screwdriver X ///
to release the two P ad
extraction levers ﬂ
i E8481A
N Module
" Extraction Lever
(2 Align the terminal module connectors
_ o the E8481A module connectors. J
4 ™

@ Apply gentle pressure to attach
the terminal module to the relay
matrix module.

@ Push the extraction levers

to lock the terminal module
onto the E8481A module.

Extraction Levers

G

To remove the terminal module from the E8481A,
use a small screwdriver to release the two extraction
levers and push both levers out simultaneously to
free it from the E8481A module.

-

Figure 2-7. Attach a Terminal Module to the E8481 Matrix Module

26 Configuring the Module Chapter 2

Chapter 3
Using the Matrix Module

About This Chapter

NOTE

This chapter uses typical examples to show how to use the E8481A Matrix
module. Chapter contents are:

® Power-On and Reset Conditions 28
®* Module Identification 28
® Setting Module FunctionMode 30
® SwitchingChannels. 32
® Using State Patternsto Switch Channels 34
® Scanning ChannelsUsing Trig InfOut Ports. 37
® Scanning ChannelsUsing TTL Trigger 42
® Usingthe Scan CompleteBit 47
® QueryingtheMatrix Module 49
® Recallingand SavingStates 50
® Detecting Error Conditions. 51
® Synchronizingthelnstruments. 51

All example programs in this chapter were developed on an external PC
using HTBasic or Visual C/C++ asthe programming language. They are
tested with the following system configuration:

* An E1406A command module and an EB481A Matrix module are
installed in the mainframe.

® The computer is connected to the E1406A command moduleviaGPIB
interface. The GPIB select codeis 7, the GPIB primary addressis 09,
and the E8481A moduleisat logical address 112 (secondary address =
112/8 = 14).

® The E8481A SCPI driver had been downloaded into the E1406A
command module.

® The SICL Library, the VISA extensions, and an Agilent 82350 GPIB
card had been installed and properly configured in the computer.

Refer to the Agilent E1406A Command Module User’s Guide for more
addressing information. For more details on the related SCPI commands
used in this chapter, see Chapter 4 of this manual.

Do not do register writesif you are controlling the module by a high level
driver such as SCPI or VXIplug& play. Thisis because the driver will not
know the modul e state and an interrupt may occur causing the driver
and/or command module to fail.

Chapter 3

Using the Matrix Module 27

Power-On and Reset Conditions

At power-on or following areset (*RST command), al channels of the
module are open. The *RST command also invalidates the current scan list
(that is, you must specify anew scan list for scanning). Command
parameters are set to the default conditions as shown below.

Table 3-1. E8481A Default Conditions for Power-on and Reset

Parameter Default Description
ARM:COUNt 1 Number of scanning cycles is 1.
TRIGger:SOURce IMM Advances through a scanning list automatically.
INITiate:CONTinuous OFF Continuous scanning is disabled.
OUTPuUt:ECLTrgn[:STATe] OFF Trigger output from ECL trigger line is disabled.
OUTPUt[:EXTernal][:STATe] OFF Trigger output from "Trig Out" port is disabled.
OUTPUt:TTLTrgn[:STATe] OFF Trigger output from TTL trigger line is disabled.

Module Identification

Example:
Identifying Module
(HTBasic)

The following example programs use the *RST, *CLS, *IDN?,
SYST:CTYP?, and SY ST:CDES? commands to reset and identify the
Matrix module.

10

20

30
40

50
60

70
80

90

DIM A$[50], B$[50], C$[50]
OUTPUT 70914; "™*RST; *CLS"

OUTPUT 70914; "*IDN?"
ENTER 70914; A$

OUTPUT 70914, "SYST:CDES? 1"

ENTER 70914; B$

OUTPUT 70914, "SYST:CTYP? 1"

ENTER 70914; C$

PRINT A$, B$, C$

100 END

! Dimension three string
variablesto fifty characters.

I Reset the module and clear
status registers.

I Query module identification.

| Enter the result into A$.

I Query for module description.
| Enter the result into BS.

! Query for module type.
I Enter theresult into C$.

! Print the contents of the
variable A$, B$ and C$.

28 Using the Matrix Module

Chapter 3

Example:

Identifying Module

(CIC++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 112, secondary addressis 14 */

#define INSTR_ADDR "GPIB0::9::14::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager session */
ViSession E8481A,; /* Module session */
char id_string[256]; [* ID string */
char m_desp[256]; /* Module description */
char m_type[256]; /* Module type*/

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);

return errStatus;}

/* Open the modul e instrument session */

errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);

if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

* Reset the matrix module and clear the status registers */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query the module ID string */
errStatus = viQueryf(E8481A, "*IDN?\n", "%t", id_string);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("ID is %s\n", id_string);

* Query the module description */
errStatus = viQueryf(E8481A, "SYST:CDES? 1\n", "%t", m_desp);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Module Description is %s\n", m_desp);

Chapter 3

Using the Matrix Module

29

/* Query the module type */
errStatus = viQueryf(E8481A, "SYST:CTYP? 1\n", "%t", m_type);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Module Type is %s\n", m_type);

* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Setting Module Function Mode

Example: Setting
Function Mode
(HTBasic)

When shipped from the factory, the E8481A is configured as a 4x32 matrix
module. The E8481A matrix module can also be set to function as two
independent 4x16 matrixes. Usethe FUNC <card_num>, <mode> command
to set the module to the desired function mode.

The following example programs were written in HTBasic and Visual
C/C++ programming languages. They will set the E8481A to function as
two independent 4x 16 matrixes, then query the setting. Theresult isreturned
to the computer and displayed ("SINGLE4X 32" indicates the module
functioned asa4x32 Matrix, "DUAL4X 16" indicates the modul e functioned
as two independent 4x16 matrixes).

10

20

30

40
50
60

70

DIM Func$[20] ! Dimension a string variable
to twenty characters.

OUTPUT 70914; "™*RST; *CLS" I Reset the module and clear
status registers.

OUTPUT 70914; "ROUT:FUNC 1, DUAL4X16"

I Set the module as dual 4x16

matrixes.

OUTPUT 70914; "ROUT:FUNC? 1" I Query the function mode.

ENTER 70914; Func$ | Enter the result into Func$.

PRINT A$! "DUAL4X16" will be
displayed.

END

30 Using the Matrix Module

Chapter 3

Example: Setting
Function Mode

(CIC++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 112, secondary addressis 14 */

#define INSTR_ADDR "GPIB0::9::14::INSTR"

int main()

{

ViStatus errStatus;

[* Satus from each VISA call */

ViSession ViRM; [* Resource manager session */

ViSession E8481A,; /* Module session */
char func[20]; /* Function mode */

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){

printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);

return errStatus;}

/* Open the modul e instrument session */

errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);

if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Set module to function as dual 4x16 matrixes */
errStatus = viPrintf(E8481A, "ROUT:FUNC 1, DUAL4X16\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Query the function mode set for the module */
errStatus = viQueryf(E8481A, "ROUT:FUNC? 1\n", "%t", func);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("The module is set to function as: %s\n", func);

* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

Chapter 3

Using the Matrix Module

31

Switching Channels

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Use CLOSe <channel_list> to close one or more matrix channels, and use
OPEN <channel_list> to open the channel(s). The channel_list hasthe form:

® (@ssrrcc) for asingle channel

® (@ssrree,ssrrec) for multiple channels

® (@ssrrec:ssrrec) for sequential channels

® (@ssrrec:ssrree,ssrrec:ssrrec) for groups of sequential channels
® or any combination of the above.

where ss = card number (01-99), rr = row humber (00-03) and

cc

= column number (00-31).

The following example programs were written in HTBasic and Visual
C/C++ programming languages. They will show how to close/open
channels, then query their state. The result is returned to the computer and
displayed (1 = channel closed, 0 = channel open).

Example: Closing 10
Multiple Channels
(HTBasic)

30
40

50

60
70
80

DIM A$[20] I Dimension a string variableto
twenty characters.

OUTPUT 70914; "*RST; *CLS" I Reset the module and clear
status registers.

OUTPUT 70914; "ROUT:CLOS (@10003, 10102)"
! Close channels 10003
and 10102.
OUTPUT 70914; "ROUT:OPEN (@10003)"
I Open channel 10003.

OUTPUT 70914; "ROUT:CLOS? (@10003, 10102)"
I Query closurestate of channels
10003 and 10102.
ENTER 70914; A$ I Enter the result into AS$.
PRINT A$ 1"0,1" will be displayed.
END

32 Using the Matrix Module

Chapter 3

Example: Closing
Multiple Channels

(CIC++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 112, secondary addressis 14 */

#define INSTR_ADDR "GPIB0::9::14::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager session */
ViSession E8481A; /* Module session */
char ch_stat[10]; [* Channel state */

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the module */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

I* Query closure state of channel 0002 after a reset */
errStatus = viQueryf(E8481A,"ROUT:CLOS? (@10002)\n","%t",ch_stat);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("After reset, chan 10002 state is: %s\n", ch_stat);

* Close channel 0002 of card 1*/
errStatus = viPrintf(E8481A, "CLOS (@10002)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query closure state of channel 0002 */
errStatus = viQueryf(E8481A,"ROUT:CLOS? (@10002)\n","%t",ch_stat);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Now, channel 10002 state is: %s\n", ch_stat);

Chapter 3

Using the Matrix Module 33

* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Using State Patterns to Switch Channels

NOTE

Example: Using a
State Pattern to
Switch Channels
(HTBasic)

To improve the switching throughput, an 8 kB non-volatile RAM
(NVRAM) is provided on the module, allowing to store up to 511 state
patterns for all 128 channels. Then you can operate the channel relays with
the stored pattern whenever you required. In thisway, switching all 128
channelsis amost asfast as switching a single channel.

The following example programs were written in HTBasic and Visual
C/C++ languages, respectively. Each uses a state pattern to operate the
channel relays. They first reset the module to open all channels of the
module, then set channels state in a pattern (including select a pattern
number, open al channelsin the pattern, then close some of the channelsin
the pattern). After having finished the pattern setting, you can use the saved
pattern to operate the channels whenever you require.

For the related SCPI commands used in these examples, see
[ROUTe:]PATTern: subsystem on Page 74 of this manual. If you want to
learn more about the pattern structure in the NVRAM, see “NVRAM
Control Registers’ on page 107 of this manual.

Before setting/querying channels open/closed state in a pattern, you must
use PATT:NUMB command to select a pattern first.

10 DIM Ch_PatStat$[50],Ch_Stat$[50],Err_num$[256]
! Dimension three string
variables.
20 OUTPUT 70914; "*RST;*CLS" I Reset the module and clear
Satusregisters.
30 OUTPUT 70914; "PATT:NUMB 1,10" ! Select pattern 10 of module #1.

40 OUTPUT 70914; "PATT:OPEN (@10000:10331)"
I Set all 128 channelsin pattern
10 to the open state.

34 Using the Matrix Module

Chapter 3

Example: Using a

State Pattern to
Switch Channels

(CIC++)

50 OUTPUT 70914; "PATT:CLOS (@10000,10101,10202)"
! Set channels 10000, 10101 and
10202 to the closure statein
pattern 10.
60 OUTPUT 70914; "PATT:CLOS? (@10000,10101,10202)"
I Query to verify the settingsin
pattern 10.

70 ENTER 70914; Ch_PatStat$ | Enter theresult into the
variable.
80 PRINT "The channel states in Pattern 10: ";Ch_PatStat$
1"1,1,1" should be displayed.
90 OUTPUT 70914; "ROUT:CLOS? (@10000,10101,10202)"
I Query to verify the actual state

of these channels.
100 ENTER 70914; Ch_Stat$ | Enter theresult into Ch_Stat$.
110 PRINT "Channel States: ";Ch_Stat$ 1"0,0,0" should be displayed.
120 OUTPUT 70914; "PATT:ACT 1,10" ! Recall pattern 10to operateall

channels of module #1.
130 OUTPUT 70914; "ROUT:CLOS? (@10000,10101,10202)"
! Query to verify the closure

state of these channels.
140 ENTER 70914; Ch_Stat$ I Enter theresult into the
variable.
150 PRINT "Channel States: ";Ch_Stat$ 1"1,1,1" should be displayed.
160 OUTPUT 70914; "SYST:ERR?" I Check for a systemerror.
170 ENTER 70914;Err_num$ | Enter the error into Err_nums.
180 PRINT "Error: ";Err_num$! Print error if any.

190 END

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Module logical addressis 112, secondary addressis 14 */
#define INSTR_ADDR "GPIB0::9::14::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager session */
ViSession E8481A,; /* Module session */
char pstat[256]; /* Channel statein pattern */
char cstat[256]; [* Channel state */

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

Chapter 3

Using the Matrix Module 35

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

I* Reset the module */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Select pattern 10 on module #1 for storing states*/
errStatus = viPrintf(E8481A, "PATT:NUMB 1, 10\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Open all channelsin pattern 10 */
errStatus = viPrintf(E8481A, "PATT:OPEN (@10000:10331)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Close channels 0000, 0101 and 0202 in pattern 10 */
errStatus = viPrintf(E8481A, "PATT:CLOS (@10000,10101,10202)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query channels 0000, 0101 and 0202 state in pattern 10 */

errStatus = viQueryf(E8481A, "PATT:CLOS?
(@10000,10101,10202)\n", "%t", pstat);

if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Query the actual states of channels 0000,0101and 0202 */
/* "0,0,0" should be displayed. */
errStatus = viQueryf(E8481A, "ROUT:CLOS?
(@10000,10101,10202)\n", "%t", cstat);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}
printf("Before recall pattern, channel state is: %s\n", cstat);

/* Recall pattern 10 to operate relays on module #1*/
errStatus = viPrintf(E8481A, "PATT:ACT 1, 10\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

Using the Matrix Module Chapter 3

* Verify whether channels 0000,0101,0202 are really closed */
/* "1,1,1" should be displayed after recalling the pattern. */

errStatus = viQueryf(E8481A, "ROUT:CLOS?
(@10000,10101,10202)\n", "%t", cstat);

if (VI_SUCCESS > errStatus) {
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

printf("After recall pattern, channel state is: %s\n", cstat);

/* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Scanning Channels

For the E8481A Matrix Switch module, scanning channels consists of
closing a set of channels, one a atime. Y ou can scan any combination of
channelsfor a single-module or a multiple-module switchbox. Single,
multiple, or continuous scanning modes are available.

Use TRIGger:SOURce command to specify the source to advance the scan.
Use OUTPut subsystem commands to select the E1406A command module
Trig Out port, or ECL Trigger buslines (0-1), or TTL Trigger buslines

(0-7). Use ARM:COUNt <number> to set multiple/continuous scans (from 1
to 32,767 scans). Use INITiate:CONTinuous ON to set continuous scanning.
See Chapter 4 of this manual for information about these SCPI commands.

Example: Scanning Thisexample uses E1406A command module's "Trig In" and "Trig Out"
; ports to synchronize the matrix module channel closures with an external
C_h annels Usin g measurement multimeter (Agilent 34401A). See Figure 3-1 for typical user
Trig In/Out Ports connections. For measurement synchronization:

-- E1406A’s Trig Out port (connected to the 34401A multimeter’s
External Trigger port) isused by the matrix module to trigger the
multimeter to perform a measurement.

-- E1406A’s Trig I n port (connected to the 34401A multimeter’s
Voltmeter Complete port) isused by the multimeter to advance the
matrix scan.

Chapter 3 Using the Matrix Module 37

For this example, Row 00 (High and Low) of the E8481A matrix moduleis
connected to the multimeter’s High and Low. The columns 00 through 15
are then scanned and different Device Under Test (DUTS) are switched in
for a measurement.

E1406A
Command Module

EaEaEaEe BIEIEIES | T

Em s

VM Comp

Ext Trig

[=g=]

RowA 00L

pu

1 ‘ o]

§

RowA 00H !

Agilent 34401A Multimeter (from rear view) E8481A Opt 106

Terminal Module

[W

Matrix Module

E8481A

Figure 3-1. Scanning Channels using Trig In/out Ports

Programming with
HTBasic

The following HTBasic program sets up the external multimeter (Agilent
34401A) to scan making DC voltage measurements. The Matrix module has
alogical address 112 (secondary address 14), and the external multimeter
has an address of 722.

10

20

30

40

50

60
70

80

90

DIM Rdgs(1:16)

OUTPUT 722; "*RST;*CLS"
OUTPUT 70914, "*RST;*CLS"
OUTPUT 722; "CONF:VOLT:DC 12"
OUTPUT 722; "TRIG:SOUR EXT"

OUTPUT 722; "TRIG:COUN 16"
OUTPUT 722; "INIT"

WAIT 1

OUTPUT 70914, "OUTP ON"

100 OUTPUT 70914; "TRIG:SOUR EXT"

I Dimension a variable to store
readings.

I Reset the dmm and clear its
status registers.

I Reset the matrix module and
clear its status registers.

I Set the dmm for DCV
measurement, 12 V.- maximum.

I Set the dmm trigger sourceto
EXTernal triggering.

I Set thedmmtrigger count to16.

I Set the dmmto the
wait-for-trigger state.

I Wait for 1 second.

I Set the matrix output pulseson
E1406A "Trig Out" port when
channel closed.

| Set thematrix trigger sourceto
external triggering.

38 Using the Matrix Module

Chapter 3

Programming with C/C++

110 OUTPUT 70914; "SCAN (@10000:10015)"
! Define channel list (row 00,
columns 00-15) for scanning.

120 OUTPUT 70914; "INIT" ! Sart scan and close channel
10000.

130 OUTPUT 722; "FETCH?" ! Read measurement results
from the dmm.

140 ENTER 722; Rdgs(*) ! Enter measurement results.

150 PRINT Rdgs(*) I Display measurement results.

160 END

The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the external multimeter (Agilent
34401A) to scan making DC voltage measurements.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Interface logical addressis 112, Matrix secondary addressis 14 */

#define INSTR_ADDR "GPIBO0::9::14::INSTR"
[* interface address for 34401A Multimeter */

#define MULTI_ADDR "GPIBO0::22::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; /* Resource manager session */
ViSession E8481A,; /* Module session */
ViSession dmm; /* Multimeter session */
int loop; * loop counter */
int opc_int; [* OPC? variable */
double readings [16]; I* Reading storage */

/* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the matrix module instrument session */
errStatus = viOpen(ViRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(viRM,MULTI_ADDR, VI_NULL,VI_NULL,&dmm);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

Chapter 3

Using the Matrix Module 39

[* Set timeout value for multimeter and matrix module */

viSetAttribute (dmm,VI_ATTR_TMO_VALUE,1000000);
viSetAttribute (E8481A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the multimeter and clear its status registers*/
errStatus = viPrintf(dmm, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Configure dmm for DCV measurements, 12V maximum */
errStatus = viPrintf(dmm, "CONF:VOLT:DC 12\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set multimeter trigger sourceto EXTernal */
errStatus = viPrintf(dmm, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Set multimeter trigger count to 16 */
errStatus = viPrintf(dmm, "TRIG:COUN 16\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Initialize multimeter, wait for triggering */
errStatus = viPrintf(dmm, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Wait for 1 second */

_sleep(1000);

/* Reset matrix module and clear its status registers */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable matrix module output pulses on E1406A "Trig Out" port */
/* when a channel is closed */

errStatus = viPrintf(E8481A, "OUTP ON\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

40

Using the Matrix Module

Chapter 3

[* Set matrix trigger sourceto EXTernal */
errStatus = viPrintf(E8481A, "TRIG:SOUR EXT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Setupascanlist */
errStatus = viPrintf(E8481A, "SCAN (@10000:10015)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Pause until ready */
errStatus = viQueryf(E8481A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

[* Sart scan and close channel 10000 */
errStatus = viPrintf(E8481A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Wait for scan to complete */
errStatus = viPrintf(E8481A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

for (; ;){
errStatus = viQueryf(E8481A, "*STB?\n", "%d", &opc_int);
if (opc_int&0x80)
break;}
printf("Scan has completed!");

[* Get readings from the multimeter */
errStatus = viQueryf(dmm, "FETC?\n", "%,16lf", readings);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

* Display the measurement results */
for (loop=0;loop<16;loop++) {
printf ("Reading %d is: %lIf\n", loop, readings[loop]); }

I* Close the EB481A instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

Chapter 3

Using the Matrix Module

41

I* Close the multimeter instrument session */
errStatus = viClose (dmm);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

/* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Example: Scanning Thisexample uses E1406A command module’s TTL Trigger Bus Linesto
Channels Usin g synchronize matrix channel closures with a system multimeter (Agilent

] E1412A). See Figure 3-2 for typical user connections. For measurement
TTL Trigger synchronization:

-- E1406A’'s TTL Trigger Bus Line O is used by the matrix module to
trigger the multimeter to perform a measurement.

-- E1406A’s TTL trigger bus line 1 is used by the multimeter to
advance the matrix scan.

Part of VXI bus
Fmmmmmmm e - ——— -,
: !
| pmmmmm e m e - — - -
o E1406A E1412A A F?isﬁ,édul o
11 Command Mbdul e Mul timeter Modul e E8481A Opt 105 ry —@T
1 1 1 I
! ! L @) Termi nal Modul e lih ! (1
1 1 ! —
T
oLl [T 9___1995;} 2 | L
1 1
1 1 TTLTrg O
S [=0 = Lt g——— -
TTLTrg 1 VM RowA OHIL [. o §
Complete RowA OL B P
o s
[j H 3 0} ,///// ;
i \A@f -
o1&
»
O @
; A
9 E-d
=z = 2
=g L)

Figure 3-2. Scanning Using TTL Trigger Bus Lines

42 Using the Matrix Module Chapter 3

Programming with

HTBasic

Figure 3-2 shows how to connect the matrix module to the E1412A
multimeter module. The connections shown with dotted lines are not actual
hardware connections. These connections indicate how the E1406A
firmware operates to accomplish the triggering. For this example, Row 00
(High and Low) of the EB481A matrix module is connected to the
multimeter’ s High and Low. The columns are then scanned and different
DUTS are switched in for a measurement.

This example program was written in HTBasic programming language. It
configuresthe multimeter (E1412A) for DC voltage measurements, setsthe
matrix module to scan channels on row 00, columns 00 through 15. The
E1412A multimeter has a GPIB address of 70903 and the matrix module has
alogical address of 112 (GPIB address of 70914).

10 DIM Rdgs(1:16) I Dimension a variable to
store readings.

20 OUTPUT 70903; "*RST;*CLS" ! Reset the dmm and clear its
status registers.

30 OUTPUT 70914; "*RST;*CLS" ! Reset the matrix module and

clear its status registers.

40 OUTPUT 70903; "CONF:VOLT 12,MIN" ! Set the dmm for DCV
measurement, 12 V max, min
resolution.

50 OUTPUT 70903; "OUTP:TTLT1:STAT ON"

| Setthedmmpulses TTL trigger
line 1 on measurement
complete.

60 OUTPUT 70903; "TRIG:SOUR TTLTO" ! Setthedmmto betriggered by
TTL trigger line 0.

70 OUTPUT 70903; "TRIG:DEL 0.01" I Set the dmmtrigger delay time
to 10 ms

80 OUTPUT 70903; "TRIG:COUN 16" I Set thedmmtrigger count to16.

90 OUTPUT 70903; "*OPC?" I Check to seeif dmm ready

100 ENTER 70903; Check

110 OUTPUT 70903; "INIT" I Set the dmmto the

wait-for-trigger state.

120 OUTPUT 70914; "OUTP:TTLTO:STAT ON"

I Set the matrix pulses TTL
trigger line 0 on channel
closed.

130 OUTPUT 70914; "TRIG:SOUR TTLT1" ! Setthe matrix to betriggered
by TTL Trigger line 1.
140 OUTPUT 70914; "SCAN (@10000:10015)"

I Define channel list (row 00,

columns 00-15) to be scanned.
150 OUTPUT 70914; "INIT" I Initialize scan and close
channel 10000.

160 OUTPUT 70903; "FETCH?" I Read measurement results
from the dmm.

170 ENTER 70903; Rdgs(*) I Enter measurement results.

180 PRINT Rdgs(*) I Display measurement results.

190 END

Chapter 3

Using the Matrix Module 43

Programming with C/C++

The following program was written and tested in Microsoft® Visual C++
using the VISA extensions but should compile under any standard ANSI C
compiler. This example configures the multimeter for DC voltage
measurements, sets the matrix module to scan channels on row 00, columns
00 through 15.

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Interface logical addressis 112, module secondary addressis 14 */

#define INSTR_ADDR "GPIB0::9::14::INSTR"
[* Interface address for E1412 Multimeter */

#define MULTI_ADDR "GPIBO0::9::3::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; /* Resource manager session */
ViSession E8481A,; /* Module session */
ViSession E1412A,; /* Multimeter session */
int loop; * loop counter */
char opc_int[21]; [* OPC? variable */
double readings [16]; I* Reading storage */

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the matrix module instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the multimeter instrument session */
errStatus = viOpen(viRM,MULTI_ADDR, VI_NULL,VI_NULL,&E1412A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

[* Set timeout value for multimeter and matrix module */

viSetAttribute (E1412A,VI_ATTR_TMO_VALUE,1000000);
viSetAttribute (E8481A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the multimeter, clear status system*/
errStatus = viPrintf(E1412A, "*RST;*CLS\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

44 Using the Matrix Module

Chapter 3

[* Configure multimeter for DCV measurements, 12 V max, min resolution */

errStatus = viPrintf(E1412A, "CONF:VOLT 12,MIN\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set multimeter to betriggered by TTL Trigger Line O */
errStatus = viPrintf(E1412A, "TRIG:SOUR TTLTO\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the dmm pulses TTL trigger line 1 on measurement complete */

errStatus = viPrintf(E1412A, "OUTP:TTLT1 ON\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set trigger delay timeto 1 ms, trigger count to 16 */
errStatus = viPrintf(E1412A, "TRIG:DEL 0.001;COUN 16\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Pause until multimeter isready */
errStatus = viQueryf(E1412A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

/* Initialize multimeter, wait for trigger */
errStatus = viPrintf(E1412A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Reset the matrix module, clear the status registers */
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set the matrix pulses TTL Trigger line O on channel closed */
errStatus = viPrintf(E8481A, "OUTP:TTLTO ON\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set the matrix to be triggered by TTL Trigger line 1 */
errStatus = viPrintf(E8481A, "TRIG:SOUR TTLT1\n");
if(VI_SUCCESS > errStatus){

Chapter 3

Using the Matrix Module

45

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Setup a scan list */
errStatus = viPrintf(E8481A, "SCAN (@10000:10015)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Pause until ready */
errStatus = viQueryf(E8481A, "*OPC?\n", "%t", opc_int);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

[* Start scan and close channel 10000 */
errStatus = viPrintf(E8481A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Get readings from multimeter */
errStatus = viQueryf(E1412A, "FETC?\n", "%,16If", readings);
if(VI_SUCCESS > errStatus){
printf("ERROR: viQueryf() returned 0x%x\n", errStatus);
return errStatus;}

* Display measurement results */
for (loop=0;loop<16;loop++) {
printf ("Reading %d is: %lIf\n", loop, readings[loop]); }

/* Close the E8481A instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the multimeter instrument session */
errStatus = viClose (E1412A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Using the Matrix Module Chapter 3

Using the Scan Complete Bit

Example: Using the
Scan Complete Bit

(HTBasic)

Y ou can use the Scan Complete hit (bit 8) in the Operation Status Register
(in the command module) of a switchbox to determine when a scanning
cycle completes (no other bitsin the register apply to the switchbox). Bit 8
has a decimal value of 256 and you can read it directly with the
STATus:OPERation[:EVENt]? command. See Page 84 in Chapter 4 for more
information.

When enabled by the STAT:OPER:ENAB 256 command, the Scan Complete
bit will be reported as bit 7 of the Status Byte Register. Use the GPIB Serial
Poll or the |IEEE 488.2 Common Command *STB? to read the Status Byte

Register.

When bit 7 of the Status Register is enabled by the *SRE 128 Common
Command to assert a GPIB Service Request (SRQ), you can interrupt the
computer when the Scan Compl ete bit is set, after a scanning cycle
completes. This allows the computer to do other operations while the
scanning cycleisin progress.

The following example programs were written in HTBasic and Visual
C/C++ programming language respectively. It monitors bit 7 of the Status
Byte Register to determine when the scanning cycleis complete. The
computer interfaces with the E1406A command module over GPIB. The
GPIB select codeis 7, the GPIB primary address is 09, and the GPIB
secondary addressis 14.

10 OUTPUT 70914; "*RST;*CLS" ! Reset and clear the matrix.
20 OUTPUT 70914; "STATUS:OPER:ENABLE 256"
I Enable Scan Compl ete Bit.
30 OUTPUT 70914; "TRIG:SOUR IMM" I Set the matrix for internal
triggering.

40 OUTPUT 70914; "SCAN (@10000:10015)"

I Set up channel list to scan.
50 OUTPUT 70914, "*OPC?" ! Wait for operation complete.
60 ENTER 70914; A$
70 PRINT 70914; "*OPC? =";A$
80 OUTPUT 70914, "*STB?" I Query status byte register.
90 ENTER 70914; A$
100 PRINT "Switch Status = "; A$
110 OUTPUT 70914; "INIT" I Sart scan cycle and close the

channel 10000.

120 1 =0

130 WHILE(l =0) ! Say in loop until value
returned from the command
SPOLL (70914).

140 |1=SPOLL (70914)

150 PRINT "Waiting for scan to complete..."

160 END WHILE

170 1 = SPOLL (70914) 1 "128" returned indicates scan
has compl eted.

180 PRINT "Scan complete: spoll = "1
190 END

Chapter 3

Using the Matrix Module 47

Example: Using the
Scan Complete Bit
(C/IC++)

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

/* Interface logical addressis 112, module secondary addressis 14 */

#define INSTR_ADDR "GPIB0::9::14::INSTR"

int main()

{
ViStatus errStatus; [* Satus from each VISA call */
ViSession ViRM; [* Resource manager session */
ViSession E8481A,; /* Module session */
int scan; [* Scan Complete Bit* /

[* Open the default resource manager */
errStatus = viOpenDefaultRM (&viRM);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpenDefaultRM() returned 0x%x\n", errStatus);
return errStatus;}

/* Open the modul e instrument session */
errStatus = viOpen(viRM,INSTR_ADDR, VI_NULL,VI_NULL,&E8481A);
if(VI_SUCCESS > errStatus){
printf("ERROR: viOpen() returned 0x%x\n", errStatus);
return errStatus;}

[* Set timeout value for the module */
viSetAttribute (E8481A,VI_ATTR_TMO_VALUE,1000000);

/* Reset the module and clear its status registers*/
errStatus = viPrintf(E8481A, "*RST;*CLS\n");
if (VI_SUCCESS > errStatus) {
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

/* Enable the Scan Compl ete Bit */
errStatus = viPrintf(E8481A, "STAT:OPER:ENAB 256\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Set trigger source to IMMediate for internal triggering */
errStatus = viPrintf(E8481A, "TRIG:SOUR IMM\n");
if(VI_SUCCESS > errStatus){

printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

* Specify a channel list for scanning */
errStatus = viPrintf(E8481A, "SCAN (@10000:10005)\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

48 Using the Matrix Module

Chapter 3

[* Start scan and close channel 10000 */
errStatus = viPrintf(E8481A, "INIT\n");
if(VI_SUCCESS > errStatus){
printf("ERROR: viPrintf() returned 0x%x\n", errStatus);
return errStatus;}

[* Say in loop until scan complete */

for ;X
errStatus = viQueryf(E8481A, "*STB?\n", "%d", &scan);
printf("Waiting for scan to complete...");
if (scan&0x80)
break;}
printf("Scan has completed!");

* Close the module instrument session */
errStatus = viClose (E8481A);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

* Close the resource manager session */
errStatus = viClose (ViRM);
if (VI_SUCCESS > errStatus) {
printf("ERROR: viClose() returned 0x%x\n", errStatus);
return 0;}

return VI_SUCCESS;

Querying the Matrix Module

All query commands end with a"?'. The datais sent to the output buffer

where you can retrieve it into your computer to obtain the specific
information of the module. The following lists some of the query commands
often used. See Chapter 4 for more details of the related commands.

Channel closed:
Channel open:

Function Mode:

CLOS?
OPEN?
FUNC?

Channel closed in Pattern: PATT:CLOS?
Channel open in Pattern: PATT:OPEN?

Pattern number: PATT:NUMB?
Pattern activated: PATT:ACT?
Module Description: SYST:CDES?
Module Type: SYST:CTYP?
System error: SYST:ERR?

Chapter 3

Using the Matrix Module

49

Recalling and Saving States

Example: Saving
and Recalling
Instrument State
(HTBasic)

The*SAV <numeric_state> command saves the current instrument state.
Up to 10 states can be stored by specifying the numeric_state parameter as
an integer 0 through 9. The settings saved by this command are as follows:

® Channel relays states (open or closed)
® ARM:COUNt

® TRIGger:SOURce

® OUTPut:STATe

® INITiate:CONTinuous

The*RCL <numeric_state> command recalls a previously saved state
specified by the numeric_state parameter. If no * SAV was previously
executed for the numeric_state, the matrix module will configureto its
power-on/reset state (refer to Table 3-1).

The following HTBasic program shows how to save and recall the matrix
switch states. It first closes channels 10000 through 10015, then saves
current channel states to the state 5. After reset the module to open all
channels of the module, then recall the stored state 5 and verify whether the
channels are set to the saved state (channels 10000 through 10015 are
closed).

10 DIM A$[100] I Dimensionastring variablesto
30 characters.
! Reset the module and clear
status registers.
"CLOS (@10000:10015)"
I Close channel relays on
row 0, column 00 -15 of the
matrix module.

20 OUTPUT 70914, "*RST, *CLS"

30 OUTPUT 70914,

40 OUTPUT 70914; "*SAV 5" | Save all channel states as
numeric state 5.
50 OUTPUT 70914; "*RST; *CLS" ! Reset the module and clear

status register.
"CLOS? (@10000:10031)"
I Query to see what channel
relays are closed on Row O.

60 OUTPUT 70914,

70 ENTER 70914; A$

80 PRINT "Channels Closed: "; A$ I Display the closed channels.

90 OUTPUT 70914; "*RCL 5" I Recall the state 5.

100 OUTPUT 70914; "CLOS? (@10000:10031)"

! Query to see what channel
relays are closed on Row O.

110 ENTER 70914; A$

120 PRINT "Channels Closed: "; A$ I Print 1sfor thefirst 16
channelsthat are closed and
Osfor the remaining 16
channels.

130 END

50 Using the Matrix Module

Chapter 3

Detecting Error Conditions

The SYSTem:ERRor? command queries the instrument’s error queue for
error conditions. If no error occurs, the matrix modul e responds with 0,"No
error”. If errors do occur, the module will respond with the first oneinits
error queue. Subsequent queries continue to read the error queue until it is
empty. The response takes the following form:

<err_number>, <err_message>

where <err_number> is an integer ranging from -32768 to 32767, and the
<err_message> isashort description of the error and the maximum string
length is 255 characters.

Exam P le: QU eryi Ng Thefollowing example program was written in HTBasic programming
; language. It attempts anillegal channel closure for the E8481A matrix
Errors (HTBaS | C) module, then polls for the error message.

10 DIM Err_num$[256] ! Dimension a string variable.
20 OUTPUT 70914; "CLOS (@10500)" ! Try to close anillegal channel.
30 OUTPUT 70914, ":SYST:ERR?" I Check for a systemerror.

40 ENTER 70914;Err_num$ I Enter the error into Err_nums.
50 PRINT "Error: ";Err_num$! Print error +2001, "Invalid

channel number".
60 END

Synchronizing the Instruments

This section shows how to synchronize a matrix module with other
instruments when making measurements. In the following example, the
matrix module switches asignal to a multimeter, then verifies that the
switching is compl ete before the multimeter begins a measurement.

Exam P le: This example program was written in HTBasic language. Assuming the
fo multimeter (E1412A) hasthe GPIB address of 70903 and the matrix module
Syn chronizin 9 the has alogical address of 112 (GPIB address of 70914).

Instruments
. 10 OUTPUT 70914; "*RST" I Reset the module.
(HTBasic) 20 ouTPUT 70914: "CLOS (@10001)" ! Closea channel.
30 OUTPUT 70914; "*OPC?" ! Wait for operation complete.

40 ENTER 70914; OPC_value

50 OUTPUT 70914; "CLOS? (@10001)" ! Verify that the channel is
closed.

60 ENTER 70914;A

70 IF A=1 THEN

80 OUTPUT 70903; "MEAS:VOLT:DC?" ! When channel is closed, make
the measurement.

90 ENTER 70903; Meas_value

100 PRINT Meas_value ! Print the measured value.

110 ELSE

120 PRINT "CHANNEL DID NOT CLOSE"

130 END IF

140 END

Chapter 3 Using the Matrix Module 51

Notes:

52 Using the Matrix Module Chapter 3

Chapter 4
Command Reference

Using This Chapter

This chapter describes Standard Commands for Programmabl e Instruments (SCPI)
and summarizes | EEE 488.2 Common (*) commands applicable to the module. See
the Agilent E1406A Command Module User’ s Manual for additional information on
SCPI and common commands. This chapter contains the following sections:

® Command TYPES. . . oot 53
® SCPl CommandReference ..., 55
® SCPl Command Quick Reference 91
* |EEE 488.2 Common Command Reference 93

Command Types

Common
Command
Format

SCPI
Command
Format

Command
Separator

Commands are separated into two types: | EEE 488.2 Common Commandsand SCPI
Commands.

The IEEE 488.2 standard defines the common commands that perform functions
such asreset, self-test, status byte query, and so on. Common commands are four or
five characters in length, always begin with an asterisk (*), and may include one or
more parameters. The command keyword is separated from the first parameter by a
space character. Some examples of common commands are shown below:

*RST *ESR <unmask> *STB?

The SCPI commands perform functions like closing/opening switches, making
measurements, querying instrument states or retrieving data. A subsystem command
structure is a hierarchical structure that usually consists of atop level (or root)
command, one or more lower level commands, and their parameters. The following
example shows part of atypical subsystem:

[ROUTe:]
CLOSe <channel_list>
SCAN <channel_list>

[ROUTe:] isthe root command, CLOSe and SCAN are the second level commands
with <channel_list> as a parameter.

A colon () always separates one command from the next lower level command as
shown below:

ROUTe:SCAN <channel_list>

Colonsseparatethe root command from the second level command (ROUTe:SCAN).
If athird level existed, the second level is also separated from the third level by a
colon.

Chapter 4

Command Reference 53

Abbreviated
Commands

Implied
Commands

Variable
Commands

Parameters

The command syntax shows most commands as a mixture of upper and lower case
letters. The upper caselettersindicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability, you
may send the entire command. The instrument will accept either the abbreviated
form or the entire command.

For example, if the command syntax shows TRIGger, then TRIG and TRIGGER are
both acceptable forms. Other forms of TRIGger, such as TRIGG or TRIGGE will
generate an error. Y ou may use upper or lower case letters. Therefore, TRIGGER,
trigger, and TrigGeR are al acceptable.

Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command and are not sent to the
instrument.) Suppose you send a second level command but do not send the
preceding implied command. In this case, the instrument assumes you intend to use
the implied command and it responds as if you had sent it. Examine the partia
[ROUTe:] subsystem shown below:

[ROUTe:]
CLOSe? <channel_list>

The root command [ROUTe:] isan implied command. To make a query about a
channel’ s present status, you can send either of the following command statements:

ROUT:CLOS? <channel_list> or CLOS? <channel_list>

Some commands have what appears to be a variable syntax. For example:
OUTPuUt:TTLTrgn

In this command, the "n" is replaced by a number (range from 0 to 7). No spaceis
left between the command and the number because the number is part of the
command syntax instead of a parameter.

Parameter Types. The following table contains explanations and examples of
parameter types you might see later in this chapter.

Parameter Type Explanations and Examples

Numeric Accepts all commonly used decimal representations of number
including optional signs, decimal points, and scientific notation.

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01. Special
cases include MINimum, MAXimum, and DEFault.

Boolean Represents a single binary condition that is either true or false
ON, OFF 1,0
Discrete Selects from a finite number of values. These parameters use

mnemonics to represent each valid setting.

An example is the TRIGger:SOURce <source> command where
source can be BUS, EXT, HOLD, or IMM.

54 Command Reference

Chapter 4

Linking
Commands

Optional Parameters. Parameters shown within square brackets ([]) are optional
parameters. (Note that the brackets are not part of the command and are not sent to
the instrument.) If you do not specify avalue for an optional parameter, the
instrument uses the default value. For example, consider the ARM:COUNt?[<MIN |
MAX>] command. If you send the command without specifying a parameter, the
present ARM:COUNT setting is returned. If you send the MIN parameter, the
command returns the minimum count available. If you send the MAX parameter, the
command returns the maximum count available. Be sure to place a space between
the command and the parameter.

Linking IEEE 488.2 Common Commandswith SCPI Commands. Usea
semicolon (;) between the commands. For example:

*RST;CLOS (@100) or TRIG:SOUR BUS;*TRG

Linking Multiple SCPI Commands. Use both a semicolon (;) and acolon (:)
between the commands. For example:

ARM:COUNL1;: TRIG:SOUR EXT

SCPI also allows several commands within the same subsystem to be linked with a
semicolon. For example:

ROUT:CLOS (@100);:ROUT:CLOS? (@100)
- Or -

ROUT:CLOS (@100);CLOS? (@100)

SCPI Command Reference

This section describes the Standard Commands for Programmabl e Instruments
(SCPI) reference commands for the Matrix Switch module. Commands are listed
aphabetically by subsystem and also within each subsystem.

Chapter 4

Command Reference 55

ABORt

Subsystem Syntax

Comments

Example

The ABORt command stops a scan in progress when the scan is enabled viathe
interface, and the trigger source is either TRIGger:SOURce BUS or
TRIGger:SOURce HOLD.

ABORt

ABORt Actions: The ABORt command terminates the scan and invalidates the
current channel list. When the ABORt command is executed, the last channel closed
during scanning remains in the closed position.

Affect on Scan Complete Status Bit: Aborting a scan will not set the "scan
complete”" status bit.

Stopping Scan Enabled Vialnterface: When ascanisenabled viaaninterface, and
the trigger sourceis neither HOLD nor BUS, an interface clear command (CLEAR 7
orviClear () functionin VISA) can be used to stop the scan. When the scan isenabled
viathe interface and TRIGger:SOURce BUS or HOLD is set, you can use ABORt
command to stop the scan.

Restarting a Scan: Usethe INIT command to restart the scan.

Related Commands. ARM, INITiate:CONTinuous, [ROUTe:]SCAN, TRIGger

Stopping a Scan with ABORt

This example stops a continuous scan in progress.

TRIG:SOUR BUS I BUSistrigger source.
INIT:CONT ON I Set continuous scanning.
SCAN (@10000:10003) I Set channel list to be scanned.
INIT I Sart scan, close channel 10000.
ABOR I Abort scan in progress.

56 Command Reference

Chapter 4

ARM

Subsystem Syntax

The ARM subsystem sel ects the number of scanning cycles (1 to 32,767) for each
INITiate command.

ARM
:COUNt <number> MIN | MAX
:COUNt? [<MIN | MAX>]

ARM:COUNt

ARM:COUNt <number> MIN | MAX allows scanning cyclesto occur a multiple of
times (1 to 32,767) with one INITiate command when INITiate:CONTinuous OFF | O
isset. MIN sets 1 cycle and MAX sets 32,767 cycles.

Parameters

Name Type Range of Values Default Value
<number> numeric 1-32,767 | MIN | MAX 1

Comments Number of Scans: Useonly values between 1to 32767, MIN, or MAX for the number
of scanning cycles.
Related Commands. ABORt, INITiate[:IMMediate], INITiate: CONTinuous
*RST Condition: ARM:COUNt 1

Example Setting Ten Scanning Cycles

This example sets the relay matrix to scan channels 10000 through 10003 for ten
times.

ARM:COUN 10 I Set 10 scanning cycles.
SCAN (@10000:10003) I Scan channels 10000 to 10003.
INIT I Start scan, close channel 10000.

Chapter 4

Command Reference 57

ARM:COUNLt?

Parameters

Comments

Example

ARM:COUNt? [<MIN | MAX>] returnsthe current number of scanning cycles set by
ARM:COUNL. The current number of scan cyclesis returned when MIN or MAX
parameter is not specified. With MIN or MAX as a parameter, "1" is returned for the
MIN parameter; or "32767" is returned for the MAX parameter regardless of the
ARM:COUNL value set.

Name

Type

Range of Values

Default Value

<MIN | MAX>

numeric

MIN =1, MAX = 32,767

current cycles

Related Commands: INITiate[:IMMediate]

Querying Number of Scanning Cycles

This example sets 10 scanning cycles, then queries the setting.

ARM:COUN 10

ARM:COUN?

I Set 10 scanning cycles per INIT

command.

I Query number of scanning cycles.

58 Command Reference

Chapter 4

DIAGnostic

The DIAGnostic subsystem is used to control the modul€e' s interrupt capability,
including disabling the interrupt, selecting an interrupt line. In addition, some
potential failure may be identified with this subsystem.

Subsystem Syntax DIAGnostic
(INTerrupt
[:LINE] <card_number>, <line_number>
[:LINE]? <card_number>
TEST
[:RELays]?
:SEEProm? <card_number>

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <card_number>, <line_number> sets the interrupt
line of the specified module. The <card_number> specifieswhich E8481A in a
multiple-module switchbox, is being referred to. The <line_humber> can be 1
through 7 corresponding to V XI backplane interrupt lines 1 through 7.

NOTE Changing theinterrupt priority level is not recommended. DO NOT change it
unless specially instructed to do so. Refer to the E1406A Command Module User’s
Manual for more details.

Parameters
Name Type Range of Values Default Value
<card_number> numeric 1-99 N/A
<line_number> numeric 0-7 1

Comments Disable Interrupt: Setting <line_number> = 0 will disable the modul€e' s interrupt
capability.

Select an Interrupt Line: The line_number can be 1 through 7 corresponding to
V X1 backplaneinterrupt lines 1-7. Only one value can be set at onetime. The default
valueis1 (lowest interrupt level).

Related Commands: DIAGnostic:INTerrupt:[LINe]?

Example SettingInterrupt Line 1 for Module #1

DIAGINT:LIN 1, 1 I Settheinterrupt line of module#1toline
1.

Chapter 4 Command Reference 59

DIAGnostic:INTerrupt[:LINe]?

Parameters

Comments

Example

DIAGnostic:INTerrupt[:LINe]? <card_number> queries the module’ sV XI
backplane interrupt line and the returned valueisone of 1, 2, 3, 4, 5, 6, 7 which
correspondsto the modul€' sinterrupt lines 1-7. Thereturned val ue being 0 indicates
that the modul€' sinterrupt is disabled. The <card_number> specifies which
E8481A in amultiple-module switchbox is being referred to.

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Return value of "0" indicates that the modul€e’ s interrupt is disabled. Return values
of 1-7 correspond to V XI backplane interrupt lines 1 through 7.

When power-on or reset the module, the default interrupt lineis 1.

Querying Modul€' sInterrupt Line

DIAGIINT:LIN 1, 1 I Set the interrupt line of module #1
toline 1.
DIAG:INT:LIN? 1 I Query the modul€' sinterrupt line.

DIAGnostic: TEST[:RELays]?

Comments

WARNING

Example

DIAGnostic: TEST[:RELays]? causes the instrument to perform aself test which
includes writing to and reading from al relay registers and verifying the correct
values. A failure may indicate a potential hardware problem.

Returned Value: Returns O if all tests passed; otherwise the card fails.

Error Codes: If the card fails, the returned valueisin the form
100* card number + error code. Error codes are;

1 = Internd driver error;

2 =VXI bustime out;

3= Card ID register incorrect;

5 = Card data register incorrect;

10 = Card did not interrupt;

11 = Card busy time incorrect;

40 = Relay register read and written data don’t match.

Disconnect any connections to the module when performing this
function.

Perform Diagnostic Test to Check Error(s)

DIAG:TEST? ! Returned "0" indicates that the system
has passed the self test otherwise the
system has an error.

60 Command Reference

Chapter 4

DIAGnostic: TEST:SEEProm?

Parameters

Comments

Example

DIAGnostic: TEST:SEEProm? <card_number> checkstheintegrity (checksum) of
the serial EEPROM on the module. Return value of "0" if no error. Otherwise, return

vaue of "-1".
Name Type Range of Values Default value
<card_number> numeric 1-99 N/A

Related Commands. SYST:CTYPE? <card_number>

Checking EEPROM Checksum on Module #1

DIAG:TEST:SEEProm? 1

! Return"0" if no error.

Chapter 4

Command Reference

61

DISPlay

The DISPlay subsystem monitors the channel state of the selected modulein a
switchbox. This subsystem operates with an Agilent E1406A command module
when adisplay terminal is connected. With an RS-232 terminal connected to the
E1406A command module’' s RS-232 port, these commands control the display on
the terminal, and would in most cases be typed directly from the terminal keyboard.
It is possible however, to send these commands over the GPIB interface, and control
the terminal’ sdisplay. In this case, care must be taken that the instrument receiving
the DISPlay command is the same one that is currently selected on the terminal;
otherwise, the GPIB command will have no visible affect.

Subsystem Syntax DISPlay
:MON:itor
:CARD <number> | AUTO
:CARD?
[STATe] <mode>
[[STATe]?

DISPlay:MONitor:CARD

DISPlay:MONitor:CARD <number> | AUTO selects the module in a switchbox to
be monitored when the monitor mode is enabled. Use the DISPlay:MONitor:STATe
command to enable or disable the monitor mode.

Parameters

Name Type Range of Values Default Value

<number> | AUTO numeric 1-99|AUTO AUTO

Comments Selecting a specific module to be monitored: Use the DISPlay:MONitor:CARD
command to send the card number for the switchbox to be monitored.

Selecting the present module to be monitored: Use the DISPlay:MONitor: CARD
AUTO command to select the last module addressed by a switching command (for
example, [ROUTe:]CLOSe).

*RST conditions: DISPlay:MONitor:CARD AUTO

Example Selecting Module#2 in a Switchbox for Monitoring

DISPlay:MONitor;:CARD 2 I Select module #2 in a switchbox to be
monitored.

DISPlay:MONitor:CARD?

DISPlay:MONitor: CARD? queries the setting of the DISPlay:MONitor:CARD
command and returns the module in a switchbox being monitored.

62 Command Reference Chapter 4

DISPlay:MONitor[:STATe]

DISPlay:MONitor[:STATe] <mode> turns the monitor mode ON or OFF. When
monitor mode is on, the RS-232 terminal display presents an array of values
indicating the open/close state of channels on the module. The display is
dynamically updated each time a channdl is opened or closed.

Parameters

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]|0 OFF |0

Comments Monitoring Switchbox Channels: DISPlay:MONitor[:STATe] ON or
DISPlay:MONitor[:STATe] 1 turns the monitor mode on to show the channel state of
the selected module. DISPlay:MONitor[:STATe] OFF or DISPlay:MONitor[:STATe] 0
turns the monitor mode off.

NOTE Typing in another command on the RS-232 terminal will cause the
DISPlay:MONitor[:STATe] to automatically be set to OFF (0). Use of the OFF
parameter is useful only if the command is issued over the GPIB interface.

Sdlectingthe M oduleto be M onitored: Usethe DISPlay:MONitor: CARD command
to select the module.

Monitor Mode for the E8481A: When monitoring mode is turned on, the
hexadecimal numbers (sixteen 16-hits) representing all channel states will be
displayed at the bottom of the terminal. These numbers correspond to the contents of
the sixteen Relay Control Registers (from base + 12, to base + 2E;)), see “ Relay

Control Registers’ on page 104 for more information. Each channel uses two bits.
The bitsthat are " 11" represent the related channel is closed. The bits that are "00"
indicate the related channel is open. For example, the display below shows that
relaysat row 0, columns 0-1, row 1, columns 6-7, and row 3, columns 16-31 are
closed.

"00F0 0000 0000 FO00 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 FFFF FFFF"

*RST Condition: DISPlay:MONitor[:STATe] OFF | 0.

Example Enabling the Monitor Mode for Module #2

DISP:MON:CARD 2 ! Select module #2 to be monitored.
DISP:MON ON ! Turn on monitor mode.

DISPlay:MONitor[:STATe]?

DISPlay:MONitor[:STATe]? queries the monitor mode state whether it is set to ON
or OFF.

Chapter 4 Command Reference 63

INITiate

The INITiate command subsystem sel ects continuous scanning cycles and starts the
scanning cycle.

Subsystem Syntax INITiate
:CONTinuous <mode>
:CONTinuous?
[:IMMediate]

INITiate: CONTinuous

INITiate:CONTinuous <mode> enables or disables continuous scanning cyclesfor

the matrix.
Parameters
Name Type Range of Values Default Value
<mode> boolean ON|OFF|1]0 OFF |0

Comments Continuous Scanning Operation: Continuous scanning is enabled with the
INITiate:CONTinuous ON or INITiate:CONTinuous 1 command. Sending the
INITiate:IMMediate command closesthefirst channel inthe channel list. Eachtrigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channel list. A trigger at the end of the channel list closes the first
channel in the channel list and the scan cycle repeats.

Noncontinuous Scanning Oper ation: Noncontinuous scanning is enabled with the
INITiate:CONTinuous OFF or INITiate:CONTinuous 0 command. Sending the
INITiate:IMMediate command closesthefirst channel inthe channel list. Eachtrigger
from the trigger source specified by the TRIGger:SOURce command advances the
scan through the channel list. A trigger at the end of the channel list opens the last
channel in thelist and the scanning cycle stops.

Stopping Continuous Scan: Refer to the ABORt command on Page 56.

Related Commands. ABORt, ARM:COUN, INITiate[:IMMediate],
TRIGger:SOURce.

*RST Condition: INITiate:CONTinuous OFF | 0

Example Enabling Continuous Scanning

This example enables continuous scanning of channels 10000 through 10003 of a
single-module switchbox. Since TRIGger:SOURce IMMediate (default) isset, usean
interface clear command (such as CLEAR 7) to stop the scan.

INIT:CONT ON I Enable continuous scanning.
SCAN (@10000:10003) I Set channel list to be scanned.
INIT I Sart scan, close channel 10000.

64 Command Reference Chapter 4

INITiate:CONTinuous?

Example

INITiate:CONTinuous? queries the scanning state. With continuous scanning

enabled, the command returns 1" (ON). With continuous scanning disabled, the

command returns "0" (OFF).

Querying Continuous Scanning State

INIT:CONT ON I Enable continuous scanning.
INIT:CONT? I Query continuous scanning state.
It returns"1" (ON).

INITiate[:IMMediate]

Comments

Example

INITiate[:IMMediate] starts the scanning process and closes the first channel in the
channel list. Successive triggers from the source specified by the TRIGger:SOURce

command advances the scan through the channel list.

Starting the Scanning Cycle: The INITiate:IMMediate command starts scanning by
closing thefirst channel in the channel list. Each trigger received advances the scan
to the next channdl in the channel list. Aninvalid channel list generates an error (see

[ROUTe:]SCAN on Page 80).
Stopping Scanning Cycles: Refer to the ABORt command.

Related Commands: ABORt, ARM:COUN, INITiate:CONTinuous, TRIGger,
TRIGger:SOURce

Enabling a Single Scan

This example enables a single scan of channels 1000 through 10003 of a
single-module switchbox. The trigger source to advance the scan isimmediate
(internal) triggering set with TRIGger:SOURcelMMediate (default).

SCAN (@10000:10003) I Set channels to be scanned.
INIT I Sart scan, close channel 10000.

Chapter 4

Command Reference

65

OUTPut

Subsystem Syntax

The OUTPut command subsystem selects the source of the output trigger generated
when achannel isclosed during ascan. The selected output can be enabled, disabled,
or queried. The three available outputs are ECLTrg, TTLTrg trigger buses, and the
"Trig Out" port on the command modul€’s front panel (Agilent E1406A).

OUTPut

:ECLTrgn (:ECLTrgO or :ECLTrgl)
[(STATe] <mode>
[[STATe]?

[:EXTernal]
[STATe] <mode>
[[STATe]?

:TTLTrgn (:TTLTrgO through :TTLTrg7)
[STATe] <mode>
[}STATe]?

OUTPut:ECLTrgn[:STATe]

Parameters

Comments

OUTPut:ECLTrgn[:STATe] <mode> selects and enables which ECL Trigger bus
line (0 and 1) will output atrigger when a channel is closed during ascan. Thisis
also used to disable a selected ECL Trigger busline. "n" specifies the ECL Trigger
busline (O or 1) and <mode> enables (ON or 1) or disables (OFF or 0) the specified
ECL Trigger busline.

Name Type Range of Values Default Value
n numeric Oorl N/A
<mode> boolean 0]1]|OFF|ON OFF |0

Enabling ECL Trigger Bus: When enabled, atrigger pulseis output from the
selected ECL Trigger bus line (0 or 1) each time a channel is closed during a scan.
The output is a negative going pulse.

ECL Trigger BusLine Shared by Switchboxes: Only one switchbox
configuration can use the selected trigger at atime. When enabled, the selected ECL
Trigger busline (0 or 1) is pulsed by the switchbox each time a scanned channel is
closed. To disable the output for a specific switchbox, send the OUTPut:ECLTrgn
OFF or 0 command for that switchbox.

OneOutput Selected at aTime: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if ECLTrg0 isthe active output and ECLTrg1
is enabled, ECLTrg0 will become disabled and ECLTrg1 will become the active
output.

66 Command Reference

Chapter 4

Example

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce,
OUTPUt:ECLTrgn[:STATe]?

*RST Condition: OUTPut:ECLTrgn[:STATe] OFF (disabled)

Enabling ECL Trigger BusLineO

OUTP:ECLTO:STAT 1 I Enable ECL Trigger busline 0
to output pulse after each scanned
channel is closed.

OUTPut:ECLTrgn[:STATe]?

Example

OUTPuUt:ECLTrgn[:STATe]? queriesthe state of the specified ECL Trigger busline.
The command returns " 1" if the specified ECL Trg buslineisenabled or "0" if itis
disabled.

Querying ECL Trigger Bus Enable State

This example enables ECL Trigger bus line 1 and queries the enable state. The
OUTPut:ECLTrgn? command returns"1" since the line is enabled.

OUTP:ECLT1:STAT 1 ! Enable ECL Trigger busline 1.
OUTP:ECLT1? I Query bus enable state.

OUTPut[:EXTernal][:STATe]

Parameters

Comments

OUTPuUt[:EXTernal][:STATe] <mode> enables or disablesthe"Trig Out" port on
the E1406A command module to output atrigger when achanned is closed during a
scan.

® OUTPut[:EXTernal][:STATe] ON | 1 enables the port.
® OQUTPut[:EXTernal][:STATe] OFF | 0 disables the port.

Name Type Range of Values Default Value

<mode> boolean ON|OFF|1]|0 OFF |0

Enabling " Trig Out" Port: When enabled, a pulseis output from the "Trig Out"
port each time achannel is closed during scanning. If disabled, a pulseis not output
from the port after channel closures.

Output Pulse: The pulseisa+5 V negative-going pulse.

"Trig Out" Port Shared by Switchboxes: Only one switchbox configuration can
use the selected trigger at atime. When enabled, the "Trig Out" port may is pulsed
by the switchbox each time a scanned channel is closed. To disable the output for a
specific switchbox, send the OUTP OFF or 0 command for that switchbox.

Chapter 4

Command Reference 67

OneOutput Selected at a Time: Only oneoutput (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrgl isthe active output and TTLTrg4
isenabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce
*RST Condition: OUTPut[:EXTernal][:STATe] OFF (port disabled).

Example Enabling" Trig Out" Port

OUTP ON I Enable "Trig Out" port to output pulse
after each scanned channel is closed.

OUTPut[:EXTernal][:STATe]?

OUTPut[:EXTernal][: STATe]? queriesthe present state of the"Trig Out" port onthe
E1406A command module. The command returns"1" if the port is enabled or "0" if
disabled.

Example Querying"Trig Out" Port State

OUTP ON I Enable"Trig Out" port for pulse output.
OUTP? I Query port enable state.

OUTPuUt: TTLTrgn[:STATe]

OUTPut:TTLTrgn[:STATe] <mode> selects and enableswhich TTL Trigger bus
line (O to 7) will output atrigger when a channel is closed during ascan. This
command is aso used to disable aselected TTL Trigger busline. "n" specifies the
TTL Trigger busline (0 to 7) and <mode> enables (ON or 1) or disables (OFF or 0)
the specified TTL Trigger busline.

Parameters
Name Type Range of Values Default Value
n numeric Oto7 N/A
<mode> boolean ON|OFF|1]0 OFF |0

Comments EnablingTTL Trigger Bus: When enabled, apulseisoutput from the selected TTL
Trigger busline (0to 7) after each channel is closed during ascan. If disabled, apulse
is not output from the selected TTL Trigger bus line after channel closures. The
output is a negative-going pulse.

TTL Trigger BusLine Shared by Switchboxes: Only one switchbox configuration
can use the selected trigger at atime. When enabled, the selected TTL Trigger bus
line (0 to 7) ispulsed by the switchbox each time a scanned channel is closed. To
disable the output for a specific switchbox, send the OUTPut: TTLTrgn OFF or O
command for that switchbox.

68 Command Reference Chapter 4

Example

OneOutput Selected at aTime: Only one output (ECLTrgn, TTLTrgn or EXTernal)
can be enabled at one time. Enabling a different output source will automatically
disable the active output. For example, if TTLTrgl isthe active output and TTLTrg4
isenabled, TTLTrg1 will become disabled and TTLTrg4 will become the active
output.

Related Commands. [ROUTe:]SCAN, TRIGger:SOURce,
OUTPUt:TTLTrgn[:STATe]?

*RST Condition: OUTPut:TTLTrgn[:STATe] OFF (disabled)

Enabling TTL Trigger BusLine7

OUTP:TTLT7:STAT 1 ! Enable TTL Trigger busline 7
to output pulse after each scanned
channel is closed.

OUTPut: TTLTrgn[:STATe]?

Example

OUTPuUt: TTLTrgn[:STATe]? queriesthe present state of the specified TTL Trigger
busline. The command returns" 1" if the specified TTLTrg buslineisenabled or "0"
if disabled.

Querying TTL Trigger BusLine Enable State

This example enables TTL Trigger busline 7 and queries the enable state. The
OUTPut:TTLTrgn? command returns"1" since the port is enabled.

OUTP:TTLT7:STAT 1 ! Enable TTL Trigger busline 7.
OUTP:TTLT7? I Query bus enable state.

Chapter 4

Command Reference 69

[ROUTe:]

The [ROUTe:] command subsystem controls switching and scanning operations for
thematrix switch modulesin aswitchbox. Itisaso usedto control the8 kB NVRAM
on the PC board of the module where up to 511 state patterns can be stored.

Subsystem Syntax [ROUTe]

CLOSe <channel_list>
CLOSe? <channel_list>

FUNCtion <card_num>, <mode>

FUNCtion? <card_num

OPEN <channel_list>

OPEN? <channel_list>
PATTern:

ACTivate <card_num>, <pattern_num>

ACTivate? <card_num>
CLOSe <channel_list>
CLOSe? <channel_list>

NUMBer <card_num>, <pattern_num>

NUMBer? <card_num>
OPEN <channel_list>
OPEN? <channel_list>

SCAN <channel_list>

[ROUTe:]CLOSe

[ROUTe:]CLOSe <channel_list> closesthe channels specified in the channel_list.
The channd_list isin the form of (@ssrrcc), where ss = card number (01-99),

rr = matrix row number, and cc = matrix column number.

Parameters

Name Type Range of Values Items
numeric 01-99 card (ss)
<channel_list> numeric 00 - 03 row (rr)
numeric 00-31 column (cc)

Comments Closing Channels: To close:

-- asingle channel, use CLOS (@ssrrcc);

-- multiple channels, use CLOS (@ssrrcc,ssrrcc,...);
-- sequential channels, use CLOS (@ssITcc:ssITec);

-- groups of sequential channels, use CLOS (@sSITcC:SSITCC;SSITCC:SSITCC);
-- or any combination of the above.

Closure order for multiple channels with a single command is not guaranteed. Use
sequential CLOSe commands when needed.

NOTE Channel numbersin the <channel_list> can be in any random order.

70 Command Reference

Chapter 4

Example

Related Commands. [ROUTe:JOPEN, [ROUTe:]CLOSe?

*RST Condition: All channels are open.

Closing Multiple Channels

This example closes channels 10101 and 10201 of a single-module switchbox.

CLOS (@10101,10201) I Closerelays on row 01, column 01
and row 02, column 01 of the module.

[ROUTe:]CLOSe?

Comments

NOTE

Example

[ROUTe:]CLOSe? <channel_list> returnsthe current state of the channel(s)
gueried. The channel_list isin the form of (@ssrrcc). The command returns 1" if
the channel is closed or returns"0" if the channel is open. If alist of channelsis
gueried, acommadelineated list of 0 or 1 valuesisreturned in the same order of the
channel list.

Query is Software Readback: The ROUTe:CLOSe? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See “[ROUTe:]CLOSe” on page 70 for the channel_list
definition.

A maximum of 128 channels can be queried at one time. Therefore, if you want to
guery more than 128 channels, you must enter the query data in two separate
commands.

Querying Channd Closure States

This example closes channels 10101 and 10201 of a single-module switchbox and
gueries channel closure. Since the channels are programmed to be closed, "1,1" is
returned.

CLOS (@10101,10201) I Closerelays on row 01, column 01
and on row 02, column 01 of the
module.

CLOS? (@10101,10201) I Query channels closure state.

Chapter 4

Command Reference 71

[ROUTe:]JFUNCtion

[ROUTe:]JFUNCtion <card_num>, <mode> configuresthe specified module either
as a4x32 matrix or as two independent 4x16 matrixes. The E8481A moduleis
configured as a 4x32 matrix module at the factory.

Parameters
Name Type Range of Values Default Value
<card_num> numeric 01-99 N/A
<mode> Discrete SINGLE4X32 | DUAL4X16 SINGLE4X32
Comments Using the Command: The module remainsin the specified function mode at
power-up/down or after areset. Executing [ROUTe:]JFUNCtion command to change
the mode.
After Changing Function Mode: Once the function mode is changed, al channel
relays on the module will be open.
Related Commands. [ROUTe:JFUNCtion?
Example Configuring Module Function Mode

This example configures the module #1 to function as two independent 4x16
matrixes.

FUNC 1, DUAL4X16 I Configure module #1 as two

independent 4x16 matrixes.

[ROUTe:]JFUNCtion?

[ROUTe:]JFUNCtion? <card_num> returns the current function mode of the
specified module. "SINGLE4X32" returned indicates the module is configured as a
4x32 Matrix and "DUAL4X16" indicates the module is configured as two
independent 4x16 matrixes.

Parameters
Name Type Range of Values Default Value
<card_num> numeric 01-99 N/A
Comments Related Commands. [ROUTe:]JFUNCtion
Example Querying Module Function Mode

This example configures the module #1 as a 4x32 Matrix, then queries the setting.

FUNC 1, SINGLE4X32

FUNC? 1

I Configure module #1 as a 4x32 Matrix.
I SINGLE4X32 returned indicates the

modul e functions as an 4x32 matrix.

72 Command Reference Chapter 4

[ROUTe:]OPEN

[ROUTe:JOPEN <channel_list> opens the channels specified in the channel_list.
The channd_list isin the form of (@ssrrcc), where ss = card number (01-99),
rr = matrix row number, and cc = matrix column number.

Parameters
Name Type Range of Values Items
numeric 01-99 card (ss)
<channel_list> numeric 00-03 row (rr)
numeric 00-31 column (cc)

Comments Opening Channels: To open:

-- asingle channel, use OPEN (@ssrrcc);

-- multiple channels, use OPEN (@ssrrce,ssIrcc,...);

-- sequential channels, use OPEN (@ssrrcc:ssrrcc);

-- groups of sequential channels, use OPEN (@sSSITCC:SSITCC;SSITCC:SSITCC);
-- or any combination of the above.

Opening order for multiple channels with a single command is not guaranteed.
Related Commands. [ROUTe:]CLOSe, [ROUTe:]OPEN?

*RST Condition: All channels are open.

Example Opening Multiple Channels

This example opens channels 10101 and 10201 of a single-modul e switchbox.

OPEN (@10101,10201) I Open relays on row 01, column 01
and on row 02, column 01 of the
module.

[ROUTe:]OPEN?

[ROUTe:]JOPEN? <channel_list> returns the current state of the channel(s)
gueried. The channel_list isin the form of (@ssrrcc). The command returns 1" if
channel(s) are open or returns "0" if channel(s) are closed. If alist of channelsis
gueried, acommadelineated list of 0 or 1 valuesisreturned in the same order of the
channel list.

Comments Query is Softwar e Readback: The ROUTe:OPEN? command returns the current
software state of the channel(s) specified. It does not account for relay hardware
failures.

Channel_list Definition: See [ROUTe:]JOPEN command on page 73 for the
channel _list definition.

Chapter 4 Command Reference 73

NOTE A maximum of 128 channels can be queried at one time. Therefore, if you want to
guery more than 128 channels, you must enter the query data in two separate
commands.

Example Querying Channel Open States

This example opens channels 10101 and 10201 of a single-module switchbox and
gueries channel 10201 state. Since channel 10201 is programmed to be open, "1" is

returned.

OPEN (@10101,10201) I Open relays on row 01, column 01
and on row 02, column 01 of the
module.

OPEN? (@10201) I Query channel open state.

[ROUTe:]PATTern:ACTivate

[ROUTe:]PATTern:ACTivate <card_num>, <pattern_num> isusedto operatethe
channel relays with the specified state pattern previously stored in the non-volatile
RAM (NVRAM) of the module. See Page 107 of thismanual for more details of the
state patternsin the NVRAM.

Parameters
Name Type Range of Values Default value
<card_num> numeric 01-99 N/A
<pattern_num> numeric 0-510 N/A

Comments Thiscommand consists of a series of data fetching from the specified NVRAM
address space, then expanding and putting these datainto the corresponding Relay
Control Registers. The module will set the BUSY bit of the Status/Control Register
to"1" during the whole operation, and set the BUSY hitto "0" after all therelaysare
stable.

Using this command for switching: Switching all 128 channels of the moduleis
amost as fast as switching a single channel.

Related Commands. [ROUTe:]PATTern:OPEN, [ROUTe:]PATTern:CLOSe,
[ROUTe:]PATTern:ACTivate?

Example Using State Pattern to Switch Channels

This example recalls the previously stored Pattern 10 to operate channel relays of
module #1.

PATT:ACT 1, 10 ! Recall state pattern 10 to operate
channel relays of the module #1.

74 Command Reference Chapter 4

[ROUTe:]PATTern:ACTivate?

Parameters

Comments

Example

[ROUTe:]PATTern:ACTivate? <card_num> returnsthe pattern number set by the
PATTern:ACTivate command. Thereturned value should be between 0 and 510. See
Page 107 of this manual for more details on the pattern structurein the NVRAM of
the module.

Name Type Range of Values Default value

<card_num> numeric 01-99 N/A

Related Commands: [ROUTe:]PATTern:ACTivate

Querying Which Pattern is Activated

This example uses state pattern 10 to operate al channels of the module #1, then
verify which pattern is being loaded.

PATT:ACT 1, 10 I Recall pattern 10 data to operate
channel relays of the module #1.

PATT:ACT? 1 I Query which pattern is being loaded.
"10" isreturned.

[ROUTe:]PATTern:CLOSe

NOTE

Parameters

[ROUTe:]PATTern:CLOSe <channel_list> is used to set the specified channel(s)
to the closed state in the state pattern of the module’s NVRAM. Before setting, you
must use PATT:NUMB command to select a pattern number (0-510) for storing.
Thiscommand does not really closethe specified channel relays. To operate channel
relayswith the stored state pattern, use PATT:ACT command. For more information
about the state patternsin the NVRAM, see Page 107 of this manual. The
channd_list isin the form of (@ssrrcc), where ss = card number (01-99),

rr = matrix row number, and cc = matrix column number.

This command only changes the specified channels state in the selected pattern and
does not affect other channel states of the pattern. Once the channel states are
stored in a pattern, they will not change at power-on or reset. As a consegquence, the
user should be aware of the pattern’s previous value when editing.

Name Type Range of Values Items
numeric 01-99 card (ss)
<channel_list> numeric 00 - 03 row (rr)
numeric 00-31 column (cc)

Chapter 4

Command Reference 75

Comments

Example

Specifying channels to be stored as open state in NVRAM pattern:

-- Use PATT:CLOSe (@ssrrcc) for asingle channel;

-- Use PATT:CLOSe (@ssrrcce,ssrrcc,...) for multiple channels;

-- Use PATT:CLOSe (@sstrrec:ssrrec) for sequential channels;

-- Use PATT:CLOSe (@ssrrcc:ssrrce;ssrrec:ssrrec) for groups of sequential
channels;

-- or any combination of the above.
This command only changes the specified channel states stored in the state pattern
of the NVRAM. It does not redlly closethe specified channel relays. Use PATT:ACT
command to operate channel relays with the stored state pattern.

Related Commands; [ROUTe:]PATT:ACT, [ROUTe:]PATT:NUMB

Setting Channelsto the Closed Statesin Pattern 1

This example sets channels 10101 and 10201 to the closed state in Pattern 1.

PATT:NUMB 1, 1 | Select Sate Pattern 1 of Module #1 for
editing.
PATT:CLOS (@10101,10201) ! Set channels 10101 and 10201 to the

closure state in pattern 1.

[ROUTe:]PATTern:CLOSe?

Comments

NOTE

Example

[ROUTe:]PATTern:CLOSe? <channel_list> returns the state of the specified
channel(s) stored in the state pattern of the module’s NVRAM. Y ou must use
PATT:NUMB command to select apattern to be queried first. The command returns
"1" if the channel state in the NVRAM pattern is closed or returns"0" if open. If a
list of channelsis queried, acommadelineated list of O or 1 valuesisreturned in the
same order of the channel list. See Page 107 of this manual for more details on the
pattern structure in the module’'s NVRAM.

Channel_list definition: See [ROUTe]PATT:CLOSe for its definition.

A maximum of 128 channels can be queried at one time. Therefore, if you want to
query more than 128 channels, you must enter the query data in two separate
commands.

Querying Channes Closure State Stored in Pattern 1

This example sets channels 10101 and 10201 to the closure state in state pattern 1,
then gueries the setting.

PATT:NUMB 1, 1 I Select Pattern 1 of Module #1 to be
written to.

PATT:CLOS (@10101,10201) I Set the channels 10101 and 10201 to
closure state in pattern 1.

PATT:CLOS? (@10101,10201) 1"1,1" will be returned.

76 Command Reference

Chapter 4

[ROUTe:]PATTern:NUMBer

Parameters

Comments

Example

[ROUTe:]PATTern:NUMBer <card_num>, <pattern_num> selects a state pattern
inthe module' sNVRAM to store the channels state. See Page 107 of thismanual for
more details on the pattern structure in the module’s NVRAM.

Name Type Range of Values Default value
<card_num> numeric 01-99 N/A
<pattern_num> numeric 0-510 0

Using This Commands: This command is often used before setting channel states
in a state pattern with PATT:CLOS or PATT:OPEN command.

Related Commands; [ROUTe:]PATT:CLOSe, [ROUTe:]PATT:OPEN

Selecting Pattern 1in the NVRAM of Module#1 for Editing

PATT:NUMB 1, 1 | Select Pattern 1 of Module #1 to
store channels state.

[ROUTe:]PATTern:NUMBer?

Parameters

Comments

Example

[ROUTe:]PATTern:NUMBer? <card_num> returnsthe current pattern number set
by PATT:NUMB. The returned value should be between 0 and 510. See Page 107 of
this manual for more details on the pattern structure in the module’ s NVRAM.

Name Type Range of Values Default value

<card_num> numeric 1-99 N/A

Related Commands: [ROUTe:]PATTern:NUMBer

Querying Which Pattern is Selected for Editing

This example selects state pattern 10 in the NVRAM of module #1 for editing, then
queries the setting.

PATT:NUMB 1, 10 I Select pattern 10 of the module #1
to be written to.
PATT:NUMB? 1 1"10" isreturned.

Chapter 4

Command Reference 77

[ROUTe:]PATTern:OPEN

[ROUTe:]PATTern:OPEN <channel_list> isused to set the specified channel(s) to
the open state in the state pattern of the module sNVRAM. Before setting, you must
use PATT:NUMB command to select a pattern number (0-510). Thiscommand does
not really open the specified channel relays. To operate channel relays with the
stored state pattern, use PATT:ACT command. For more information about the state
patternsinthe NVRAM, see Page 107 of thismanual. Thechannel _listisintheform
of (@ssrrec), where ss = card number (01-99), rr = matrix row number, and

cc = matrix column number.

NOTE Thiscommand only changes the specified channels state in the selected pattern and
does not affect other channel states of the pattern. Once the channel states are
stored in a pattern, they will not change at power-on or reset. As a consequence, the
user should be aware of the pattern’s previous value when editing.

Parameters
Name Type Range of Values Items
numeric 01-99 card (ss)
<channel_list> numeric 00 - 03 row (rr)
numeric 00-31 column (cc)

Comments Specifying channels to be stored as the open statein NVRAM pattern:

-- Use PATT:OPEN (@ssrrcc) for asingle channel;

-- Use PATT:OPEN (@ssrrcce,ssrrcc,...) for multiple channels;

-- Use PATT:OPEN (@sstrrcc:ssrrcc) for sequential channels;

-- Use PATT:OPEN (@sstrrcc:ssrrce;ssrrec:ssrrec) for groups of sequential
channels;

-- or any combination of the above.

This command only changes the specified channel states stored in the state pattern
of the NVRAM. It does not really open the specified channel relays. Use PATT:ACT
command to operate channel relays with the stored state pattern.

Related Commands. [ROUTe:]PATT:ACT, [ROUTe:]PATT:NUMB

*RST Condition: All channels are open.

Example Setting Channelsto Open Statesin Pattern 1

This example sets channels 10101 and 10201 to the open state in state pattern 1.

PATT:NUMB 1, 1 | Select Pattern 1 of Module #1 to be
edited.
PATT:OPEN (@10101,10201) I Set channels 10101 and 10201 to the

open statesin pattern 1.

78 Command Reference Chapter 4

[ROUTe:]PATTern:OPEN?

Comments

NOTE

Example

[ROUTe:]PATTern:OPEN? <channel_list> returns the state of the specified
channel(s) stored in the state pattern of the module’sNVRAM. Y ou must use
PATT:NUMB command to select a pattern to be queried first. The command returns
"1" if the channel state in the NVRAM pattern is open or returns "0" if closed. If a
list of channelsis queried, acommadelineated list of 0 or 1 valuesisreturned in the
same order of the channel list. For more information about the state patternsin the
module' s NVRAM, see Page 107 of this manual.

Channel_list Definition: See [ROUTe:]PATT:OPEN for its definition.

A maximum of 128 channels can be queried at one time. Therefore, if you want to
query more than 128 channels, you must enter the query data in two separate
commands.

Querying Channel Open States Stored in NVRAM Pattern

This example sets channels 10101 and 10201 to the open state in Pattern 1, then
gueries the setting.

PATT:NUMB 1, 1 | Select Pattern 1 of Module #1
to store channels state.

PATT:OPEN (@10101,10201) I Set channels 10101 and 10201
to the open state in pattern 1.

PATT:OPEN? (@10101,10201) 1"1,1" will be returned.

Chapter 4

Command Reference 79

[ROUTe:]SCAN

Parameters

Comments

Example

[ROUTe:]SCAN <channel_list> defines the channels to be scanned. The
channel_list isin the form of (@ssrrcc), where ss = card number (01-99),
rr = matrix row number, and cc = matrix column number.

Name Type Range of Values Items
numeric 01-99 card (ss)
<channel_list> numeric 00 - 03 row (rr)
numeric 00-31 column (cc)

Defining Scan List: WhenROUTe:SCAN isexecuted, the channel list ischecked for
valid card and channel numbers. An error is generated for an invalid channel list.

Scanning Channels. To scan:

-- asingle channel, use SCAN (@ssrrcc);

-- multiple channels, use SCAN (@ssrrcc,ssrrcc,...);

-- sequential channels, use SCAN (@sstrrcc:ssrrcc);

-- groups of sequential channels, use SCAN (@sSSITCC:SSITCC;SSITCC:SSITCC);
-- or any combination of the above.

Scanning Operation: When avalid channel list is defined, INITiate[:IMMediate]
begins the scan and closes the first channel in the channel_list. Successive triggers
from the source specified by TRIGger:SOURCce advance the scan through the
channel list. At the end of the scan, the last trigger opens the last channel.

Stopping Scan: See ABORt command on page 56.
Related Commands: TRIGger, TRIGger:SOURce

*RST Condition: All channels are open.

Scanning Channels Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 10000
through 10003 of asingle-module switchbox. Thetrigger source to advance the scan
istheinput to the "Trig In" on the E1406A command module. When INIT is
executed, the scan is started and channel 0000 is closed. Then, each trigger received
at the"Trig In" port advances the scan to the next channel.

TRIG:SOUR EXT | Set trigger source to external.

SCAN (@10000:10003) I Set channel list to be scanned.

INIT I Sart scanning cycle and close
channel 10000.

(trigger externally) I Advance scan to next channel.

80 Command Reference

Chapter 4

STATuUS

Subsystem Syntax

The STATus subsystem reports the bit values of the Operation Status Register. It
also allows you to unmask the bits you want reported from the Standard Event
Register and to read the summary bits from the Status Byte Register.

STATus
:OPERation
:CONDition?
:ENABle <unmask>
:ENABIle?
[:EVENt]?
:PRESet

The STATus system contains four registers (that is, they residein a SCPI driver, not
in the hardware), two of which are under |EEE 488.2 control; the Standard Event
Status Register (*ESE?) and the Status Byte Register (*STB?). The Operational
Status bit (OPR), Service Request bit (RQS), Standard Event Summary bit (ESB),
Message Available bit (MAV) and Questionable Data bit (QUE) in the Status Byte
Register (bits 7, 6, 5, 4 and 3 respectively) can be queried with the *STB? command.
Usethe*ESE? command to query the <unmask> valuefor the Standard Event Status
Register (the bits you want logically OR'd into the summary bhit). The registers are
queried using decimal weighted bit values. The decimal equivalents for bits 0
through 15 are included in Figure 4-1 on page 82.

A numeric value of 256 executed in a STATus:OPERation:ENABle <unmask>
command allows only bit 8 to generate asummary bit. The decimal valuefor bit 8is
256.

The decimal values are also used in the inverse manner to determine which bits are
set from the total value returned by an EVENt or CONDition query. Therelay matrix
module driver exploits only bit 8 of Operation Status Register. This bit is called the
scan complete bit which is set whenever a scan operation completes. Since
completion of ascan operation isan event intime, you will find that bit 8 will never
appear set when STATus:OPERation:CONDition? is queried. However, you can find
bit 8 set with the STATus:OPERation:EVENt? query command.

Chapter 4

Command Reference 81

Automnatically Set ot{
Power On Conditions

Automatically Set by
Parser

Related Commands
are *OPC? and *WAI

Scan Complete —

ESSERRERRERRER

=

°

Power On
User Request
Command Error
Execution Error
Device Dependent Error
Query Error

Request Control
Set by *OPC{*Opemﬁon Complete

Out

put Queue

Standard Event Register

Operation Status Register
STATus:OPERation:CONDition?
STATus:OPERation:EVENt?

<1>
<2>

<4>

<8>

<16>
<32>

<64>

<128>
<256>

<512>

<1024>
<2048>
<4096>
<8192>
<16384>
<32768>

EN

*ESR?

<1>
<2>

<8>
<16>
<32>
<64>
<128>

EN

*ESE <unmask>
’7 *¥ESE?

<4> "OR”

STATus:OPERation:ENABle

"0R”

NOTE:

QUE = Questionable Data
MAV = Messoge Available
ESB = Standard Event
RQS Request Service
OPR = Operation Status
C = Condition Register
EV = Event Register
EN = Enable Register
SRQ = Interface Bus
Service Request

Status Byte Register

*STB?
SPOLL

*SRE <unmask>
F*SRE?
<1>
<2>
<4>
<B8>

System
Controller
Interface Bus
SRQ Line

Status
Byte

Summary Bit

Other
Instrument

Summary

unmask examples:

unmask
Register decimal
bit weight

OR”
Operation Complete ESB

*ESE 61 unmasks standard event register bits 0O,
2, 3, 4 and 5 (*ESE 128 only unmasks bit 7).

*SRE 128 unmasks the OPR bit (operation) in
the status byte register. This is effective
only if the STAT:OPER:ENAB 256 command
is executed.

STAT-OPER:ENAB 256 unmasks the "Scan Complete”
bit.

Figure 4-1. E8481A Status System Register Diagram

82 Command Reference

Chapter 4

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the state of the Condition Register in the
Operation Status Group. The state represents conditions which are part of the
instrument’ s operation. The modul€e's driver does not set bit 8 in thisregister (see
STATus:OPERation[:EVENL]?).

STATus:OPERation:ENABIe

Parameters

Comments

Example

STATus:OPERation:ENABIle <unmask> sets an enable mask to alow events
recorded in the Event Register (Operation Status Group) to send asummary bit to
the Status Byte Register (bit 7). For the matrix module, when bit 8 in the Operation
Status Register isset to "1" and that bit is enabled by the
STATus:OPERation:ENABIe 256 command, bit 7 in the Status Byte Register is set
to"1".

Name Type Range of Values Default Value

<unmask> numeric 0- 65,535 N/A

Setting Bit 7 of the StatusByte Register: STATus:OPERation:ENABle 256 setsbit
7 of the Status Byte Register to "1" after bit 8 of the Operation Status Register is set
to"1".

Related Commands: [ROUTe:]SCAN

Enabling Operation Status Register Bit 8

STAT:OPER:ENAB 256 I Enable bit 8 of the Operation Satus
Register to be reported to bit 7 (OPR)
in the Status Byte Register.

STATus:OPERation:ENABIe?

Comments

Example

STATus:OPERation:ENABIe? returns which bits in the Event Register (Operation
Status Group) are unmasked.

Output Format: Returns adecimal weighted value from 0 to 65,535 indicating
which bits are set to true.

Maximum Value Returned: The value returned is the value set by the
STAT:OPER:ENAB <unmask> command. However, the maximum decimal
weighted value used in thismoduleis 256 (bit 8 set to true).

Querying the Operation Status Enable Register

STAT:OPER:ENAB? I Query the Operation Status Enable
Register.

Chapter 4

Command Reference 83

STATus:OPERation[:EVENt]?

Comments

Example

STATus:PRESet

STATus:OPERation[:EVENTt]? returns which bits in the Event Register (Operation
Status Group) are set. The Event Register indicates when there has been a
time-related instrument event.

Setting Bit 8 of the Operation Status Register: Bit 8 (scan complete) isset to"1"
after a scanning cycle completes. Bit 8 returnsto "0" after sending the
STATus:OPERation[:EVENt]? command.

Returned Data after sendingthe STATus:OPERation[:EVENt]? Command: The
command returns "+256" if bit 8 of the Operation Status Register issetto "1". The
command returns "+0" if bit 8 of the Operation Status Register isset to "0".

Event Register Cleared: Reading the Event Register with the
STATus:OPERation:EVENt? command clearsit.

Aborting a Scan: Aborting a scan will leave bit 8 set to 0.

Related Commands: [ROUTe:]SCAN

Reading Operation Status Register After a Scanning Cycle

STAT:OPER? I Return the bit values of the Operation
Satus Register. "+256" returned shows
bit 8issetto 1; "+0" shows
bit 8isset to 0.

STATus:PRESet affectsonly the Enable Register by setting all Enable Register bits
to 0. It does not affect either the "status byte" or the "standard event status'. PRESet
does not clear any of the Event Registers.

84 Command Reference

Chapter 4

SYSTem

Subsystem Syntax

The SYSTem subsystem returns the error numbers and error messages in the error
gueue of amatrix module. It can also return the types and descriptions of modulesin
a switchbox.

SYSTem
:CDEScription? <card_number>
:CPON <card_number> | ALL
:CTYPe? <card_number>
‘ERRoOr?
:VERSion?

SYSTem:CDEScription?

Parameters

Comments

Example

SYSTem:CPON

SYSTem:CDEScription? <card_number> returns the description of a selected
module in a switchbox.

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Module Description: The SYSTem:CDEScription? <card_number> command
returns:

"Dual Wre 4 x 32 Matrix Switch"

Reading the Description of M odule #1
SYST:CDES? 1 I Return the description of module #1.

Parameters

Comments

SYSTem:CPON <card_number> | ALL resets the selected module, or multiple
modules in a switchbox.

Name Type Range of Values Default Value

<card_number> numeric 1-99orALL N/A

Module Power-on State: The power-on state of the moduleisall channdls (relays)
open. Notethat SYSTem:CPON ALL and *RST opensall channels of all modulesin
aswitchbox, while SYSTem:CPON <number> opens the channelsin only the
modul e specified in the command.

Chapter 4

Command Reference 85

Example Setting Module#1 to its Power-on State

SYST:CPON 1 I Set module #1 to its power-on state
(All channels are open).

SYSTem:CTYPe?

SYSTem:CTYPe? <card_number> returns the module type of a selected module
in a switchbox.

Parameters

Name Type Range of Values Default Value

<card_number> numeric 1-99 N/A

Comments Agilent E8481A Module Model Number: Sending this command returns:
HEW_ETT- PACKARD, E8481A, <10-di git nunber>, A. 11. 01

where the <10-digit number> is the modul€’ s serial number and A.11.01isan
example of the module revision code number.

NOTE The <10-digit number> returns 0 (zero) if the checksum of the serial EEPROM on
the module has error.The checksum of the EEPROM on the module is always
checked each time the SYST:CTYP? <number> command is executed. Refer to
DIAGnostic: TEST: SEEProm? command on page 61 for details.

Related Commands. DIAG:TEST:SEEProm? <card_number>

Example Readingthe Model Number of Module #1
SYST:CTYP? 1 ! Return the model number of module #1.

SYSTem:ERRor?

SYSTem:ERRor? returns the error numbers and corresponding error messagesin
the error queue of amatrix module. See Appendix C for alisting of the module error
numbers and messages.

Comments Error Numbers/Messagesin the Error Queue: Each error generated by a matrix
modul e stores an error number and corresponding error message in the error queue.
The error message can be up to 255 characters long.

Clearingthe Error Queue: An error number/message is removed from the queue
each timethe SYSTem:ERRor? command is sent. The errors are cleared first-in,
first-out. When the queue is empty, each following SYSTem:ERRor? command
returns: +0, "No error". To clear al error numbers/messagesin the queue, execute the
*CLS command.

86 Command Reference Chapter 4

Example

Maximum Error Numbers/Messagesin the Error Queue: The queue holds a
maximum of 30 error numbers/messagesfor each switchbox. If the queue overflows,
the last error number/message in the queue isreplaced by: -350, "Too many errors".
The least recent (oldest) error numbers/messages remain in the queue and the most
recent are discarded.

Reading the Error Queue

SYST:ERR? ! Query the error queue.

SYSTem:VERSion?

Comments

Example

SYSTem:VERSion? returns the version of the SCPI standard to which this
instrument complies.

SCPI Version: This command aways returns a decimal value "1990.0", where
"1990" isthe year, and "0" isthe revision number within that year.

Reading SCPI Version
SYST:VERS? ! Read the version of the SCPI standard.

Chapter 4

Command Reference 87

TRIGger

The TRIGger subsystem controls the triggering operation of the matrix switch
modules in a switchbox.

Subsystem Syntax TRIGger
[:IMMediate]
:SOURce <source>
:SOURce?

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes atrigger event to occur when the defined trigger
sourceis TRIGger:SOURce BUS or TRIGger:SOURce HOLD. Thiscan be used to
trigger a suspended scan operation.

Comments Executing ThisCommand: A channel list must be defined with
[ROUTe:]SCAN <channel_list> and an INITiate[:IMMediate] command must be
executed before TRIGger[:IMMediate] will execute.

BUS or HOLD Source Remains: If selected, the TRIGger:SOURce BUS or
TRIGger:SOURce HOLD commands remain in effect after triggering a switchbox
with the TRIGger[:IMMediate] command.

Related Commands: INITiate, [ROUTe:]SCAN, TRIGger:SOURce

Example Advancing Scan Using TRIGger Command

This example uses the TRIGger command to advance the scan of a single-module
switchbox from channel 10000 through 10003. Since TRIGger:SOURce HOLD is
set, the scan is advanced one channel each time TRIGger is executed.

TRIG:SOUR HOLD ! Set trigger sourceto HOLD.

SCAN (@10000:10003) I Define channel list to be scanned.

INIT I Start scanning cycle, close channel 100.
loop statement I Sart count loop.

TRIG I Advance scan to next channel.
increment loop I Increment loop count.

88 Command Reference Chapter 4

TRIGger:SOURce

TRIGger:SOURce <source> specifiesthetrigger sourceto advancethechannel list
during scanning.

Parameters
Name Type Parameter Description
BUS discrete *TRG or GET or TRIGger[:IMMediate] command
ECLTrgn numeric ECL Trigger bus line 0 - 1
EXTernal discrete "Trig In" port
HOLD discrete Hold Triggering until receiving *TRG command.
IMMediate discrete Immediate Triggering
TTLTrgn numeric TTL Trigger bus line 0 - 7

Comments Enabling the Trigger Source: The TRIGger:SOURce command only selects the
trigger source. The INITiate[:IMMediate] command enables the trigger source. The
trigger source must be selected with TRIGger:SOURce command before executing
the INIT command.

Using Bus Triggers: To trigger the switchbox with TRIGger:SOURce BUS
selected, use the | EEE 488.2 common command *TRG or the GPIB Group Execute
Trigger (GET) command, or SCPI command TRIGger[:IMMediate].

OneTrigger Input Selected at aTime: Only oneinput (ECLTrg0 or 1; TTLTrgO, 1,
2,3,4,5,60r7;0r EXTernal) can be selected at onetime. Enabling adifferent trigger
source will automatically disable the active input. For example, if TTLTrgl isthe
activeinput, and TTLTrg4 is enabled, TTLTrgl will become disabled and TTLTrg4
will become the active input.

Using TTL or ECL Trigger BusInputs: These triggers are from the VXI
backplane trigger lines ECL[0,1] and TTL[0-7]. These may be used to trigger the
"SWITCH" driver from other VXI instruments.

Using External Trigger Inputs: With TRIGger:SOURce EXTernal selected, only
one switchbox at atime can use the external trigger input at the E1406A "Trig In"
port. The trigger input is assigned to the first switchbox requesting the external
trigger source (with a TRIGger:SOURce EXTernal command).

Assigning EXTernal, TTLTrgn, and ECLTrgn Trigger Inputs. After using
TRIGger:SOURce EXT|TTLTn|ECLTNn, the selected trigger source remains assigned
to the "SWITCH" driver until it is relinquished through use of the

TRIG:SOUR BUS|HOLD command. While the trigger isin use by the "SWITCH"
driver, no other drivers operating on the E1406A command module will have access
to that particular trigger source. Likewise, other drivers may consume trigger
resources which may deny access to a particular trigger by the "SWITCH" driver.

Chapter 4 Command Reference 89

Example

Example

When Trigger SourceisHOLD: You can use*TRG command to advance the scan
when TRIGger:SOURce HOLD is selected.

"Trig Out" Port Shared by Switchboxes: Seethe“OUTPut” on page 66 for more
information.

Related Commands. ABORt, [ROUTe:]SCAN, OUTPut

*RST Condition: TRIGger:SOURce IMMediate

Scanning Using External Triggers

This example uses external triggering (TRIG:SOUR EXT) to scan channels 10000
through 10003 of asingle-module switchbox. Thetrigger sourceto advance the scan
istheinput to the "Trig In" on the E1406A command module. When INIT is
executed, the scan is started and channel 0000 is closed. Then, each trigger received
at the"Trig In" port advances the scan to the next channel.

TRIG:SOUR EXT | Set trigger source to external.

SCAN (@10000:10003) I Set channel list to be scanned.

INIT I Sart scanning cycle and close
channel 10000.

(trigger externally) I Advance scan to next channel.

Scanning Using Bus Triggers

This example uses bus triggering (TRIG:SOUR BUS) to scan channels 10000
through 10003 of asingle-module switchbox. Thetrigger source to advance the scan
isthe*TRG command (as set with TRIGger:SOURce BUS). When INIT is executed,
thescan isstarted and channel 10000 isclosed. Then, each *TRG command advances
the scan to the next channel.

TRIG:SOUR BUS I Set trigger sourceto bus.

SCAN (@10000:10003) I Set channel list to be scanned.

INIT I Sart scanning cycle and close
channel 10000.

loop statement I Loop to scan all channels.

*TRG I Advance scan to next channel.

Increment loop I Increment loop count.

TRIGger:SOURce?

Example

TRIGger:SOURce? returnsthe current trigger source for the switchbox. Command
returns: BUS, EXT, HOLD, IMM, ECLTO-1, or TTLTO-7 for sources BUS, EXTernal,
HOLD, IMMediate, ECLTrgn, or TTLTrgn, respectively.

Querying Trigger Source

This example sets external triggering and queries the trigger source. Since external
triggering is set, TRIG:SOUR? returns "EXT".

TRIG:SOUR EXT | Set external trigger source.
TRIG:SOUR? ! Query trigger source.

90 Command Reference

Chapter 4

SCPI Command Quick Reference

The following table summarizes the SCPI commands for the E8481A Module.

Command Description

ABORt ABORt Abort a scan in progress.

ARM :COUNt <number> | MIN | MAX Multiple scans per INIT command.
:COUNTt? [MIN | MAX] Query number of scans.

DIAGnostic | :INTerrupt[:LINe] <card_num>,<line_num> Set an interrupt line for the specified module.

INTerrupt[:LINe]? <card_num> Query the interrupt line of the specified module.
‘TEST[:RELays]? Do diagnostic to find the specific error(s).
:TEST:EEPRom? <card_num> Check the integrity (checksum) of EEPROM on the specified module.

DISPlay :MONitor:CARD <card_num> | AUTO Select a module in a switchbox to be monitored.
:MONitor:CARD? Query which module is set by above command.
:MONitor[:STATe] <mode> Set the monitor state on or off.

:MONitor[:STATe]? Query the monitor state setting.

INITiate :CONTinuous ON | OFF Enables/disables continuous scanning.
:CONTinuous? Query continuous scan state.
[:IMMediate] Starts a scanning cycle.

OUTPut :ECLTrgn[:STATe] ON |OFF |10 Enable/disable the specified ECL trigger line pulse.
:ECLTrgn[:STATe]? Query the specified ECL trigger line state.
[:EXTernal][:STATe] ON |OFF |1]0 Enable/disable the "Trig Out" port on the command module.
[:EXTernal][:STATe]? Query the "Trig Out" port enable state.
‘TTLTrgn[:STATe] ON |OFF | 1|0 Enable/disable the specified TTL trigger line pulse.
‘TTLTrgn[:STATe]? Query the specified TTL trigger line state.

[ROUTe:] CLOSe <channel _list> Close channel(s).
CLOSe? <channel _list> Query channel(s) closed.
FUNCtion <card_num>, <mode> Set the module function mode: single 4x32 matrix or dual 4x16 maitres.
FUNCtion? <card_num> Query the current function mode of the specified module.
OPEN <channel_list> Open channel(s).
OPEN? <channel _list> Query channel(s) opened.
PATTern:ACTivate <card_num>,<patt_num> | Load the specified pattern into registers to operate relays.
PATTern:ACTivate? <card_num> Query which pattern is loaded into the register currently.
PATTern:CLOSe <channel _list> Set the channels to the closed states in the selected pattern.
PATTern:CLOSe? <channel _list> Query the specified channels state stored in the selected pattern.
PATTern:NUMBer <card_num>,<patt_num> Select a pattern number to store channels state.
PATTern:NUMBer? <card_num> Query which pattern is selected to store channels state currently.
PATTern:OPEN <channel _list> Set channels to the open state in the selected pattern.
PATTern:OPEN? <channel _list> Query the specified channels state stored in the selected pattern.
SCAN <channel_list> Define channels to be scanned.

STATus :OPERation:CONDition? Returns contents of the Operation Condition Register.
:OPERation:ENABIle <unmask> Enables events in the Operation Event Register to be reported.
:OPERation:ENABIe? Returns the unmask value set by the :ENABIe command.
:OPERation[:EVENt]? Returns the contents of the Operation Event Register.

:PRESet Sets all Enable Register bits to 0.

SYSTem :CDEScription? <number> Returns description of module.

:CPON <number> | ALL
:CTYPe? <number>
:ERRor?

'VERSion?

Open all channels on the specified module(s).
Returns the module type.

Returns error number/message in the error queue.
Returns the version of the SCPI standard.

Chapter 4

Command Reference

91

Command

Description

TRIGger [:IMMediate]
:SOURce BUS
:SOURCce EXTernal
:SOURce HOLD
:SOURce IMMediate
:SOURce TTLTrgn
:SOURce?

Causes a trigger to occur.
Trigger source is *TRG.

Trigger source is "Trig In" port on the E1406A.
Hold off triggering.

Trigger source is the internal triggers.

Trigger is the VXlbus TTL trigger bus line n (0-7).

Query scan trigger source.

92 Command Reference

Chapter 4

IEEE 488.2 Common Command Reference

The following table lists the IEEE 488.2 Common (*) Commands that can be
accepted by the matrix module.

Command

Command Description

*CLS

Clears all status registers (see STATus:OPERation[:EVENTt]?) and clears the error queue.

*ESE <unmask>

Enable Standard Event.

*ESE? Enable Standard Event Query.

*ESR? Standard Event Register Query.

*IDN? Instrument ID Query; returns identification string of the module.
*OPC Operation Complete.

*OPC? Operation Complete Query.

*RCL <numeric state>

Recalls the instrument state saved by *SAV. You must reconfigure the scan list.

*RST

Resets the module. Opens all channels and invalidates current channel list for scanning. Sets
ARM:COUN 1, TRIG:SOUR IMM, and INIT:CONT OFF.

*SAV <numeric state>

Stores the instrument state but does not save the scan list.

*SRE <register value>

Service request enable, enables status register bits.

*SRE? Service request enable query.

*STB? Read status byte query.

*TRG Triggers the module to advance the scan when scan is enabled and trigger source is
TRIGger:SOURce BUS.

*TST? Self-test. Executes an internal self-test and returns only the first error encountered. Does not return
multiple errors. The following is a list of responses you can obtain where "cc" is the card number with
the leading zero deleted.

+0 if self test passes.
+cc01 for firmware error.
+cc02 for bus error (problem communicating with the module).
+cc03 for incorrect ID information read back from the module’s ID register.
+cc05 for hardware and firmware have different values. Possibly a hardware fault or an
outside entity is register programming the E8481A.
+ccl0 if an interrupt was expected but not received.
+ccll if the busy bit was not held for a sufficient amount of time.
*WAI Wait to Complete.

Chapter 4

Command Reference 93

Notes:

94 Command Reference Chapter 4

Appendix A
E8481A Specifications

Table 4-1. E8481A Specifications

ITEMS

SPECIFICATIONS

GENERAL CHARACTERISTICS

Module Size/Device Type:

Total Channels:

Relays Type:

Typical Relay Life:

Power Requirements:

Watts/slot:
Cooling/slot:
Operating Temperature:

Operating Humidity:

At Rated Load: 2

Peak Module Current:
Dynamic Module Current:

With 8 Crosspoints Closed: b

With 8 Crosspoints Closed: b

C-Size 1-Slot, Register based, A16,
slave only, P1 and P2 Connectors

Single 4x32 Matrix;
or Dual 4x16 matrixes

Form-A, Non-latching Reed

1x 10°

221A@ +5V
0L1A@+5V

13 W
0.1 mm H,O @ 1.1 Liter/sec for 10°C rise
0-55°C

65% RH, 0 - 40°C

INPUT CHARACTERISTICS
Maximum Voltage:
Maximum Transient Impulse:

Maximum Current:

Terminal to Terminal:

Per Channel (non-inductive):

42 Vdc, 30 Vac rms
500 V peak

0.5 Adc, 0.5 A ac peak

Maximum Power: Per Channel (resistive load): 5VA ac

Per Module (resistive load): 40 VA ac
DC ISOLATION / PERFORMANCE
Closed Channel Resistance: Per channel: < 2 Q (initial)
Isolation resistance: < (40°C, 65% RH): >1080Q
(between any two points, single module) < (25°C, 40% RH): >10° 0
Thermal Offset: Per Channel: <50 pv

(continued on the next page)

Appendix A

E8481A Specifications

95

Table 4-1. E8481A Specifications

SPECIFICATIONS

AC ISOLATION / PERFORMANCE (4x32 Configuration, Z; = Zg = 50 Q, < (40°C, 65% RH):)

Closed Channel Capacitance:

Bandwidth (-3dB):

Crosstalk Within a Card:
(Channel-Channel with 50Q termination)

Hito Lo:
Hi to Chassis:
Lo to Chassis:

4 x 32 Configuration:

<100 KHz:
<5 MHz:
< 50 MHz:

<160 pF
< 160 pF
< 550 pF

50 MHz

<-65dB
<-50dB
<-27dB

AC ISOLATION / PERFORMANCE (Dual 4x16 Configuration, Z; = Zg = 50 Q, < (40°C, 65% RH):)

Closed Channel Capacitance:

Bandwidth (-3dB):

Crosstalk Within a Card:
(Channel-Channel with 50Q termination)

Hito Lo:
Hi to Chassis:
Lo to Chassis:

4 x 16 Configuration:

<100 KHz:
<5 MHz:
< 50 MHz:

<100 pF
<100 pF
< 300 pF

70 MHz

<-65dB
<-50dB
<-27dB

a. 10 mA, 1 Vdc resistive load.

b. When more than 8 crosspoints are closed, add 0.34 W per crosspoint to the specified power dissipation (13 W),
and 0.027 liter/sec to the air flow (1.1 Liter/sec).

96 EB8481A Specifications

Appendix A

Appendix B
Register-Based Programming

About This Appendix

The Agilent EB481A 4x32 2-wire Matrix Switch moduleis aregister-based
product which does not support the V X1bus word serial protocol. When a
SCPI command is sent to the matrix, the instrument driver resident in the
Agilent E1406A command module parses the command and programs the
matrix at the register level.

Register-based programming is a series of reads and writes directly to the
modul e registers. Thisincreases throughput speed since it eliminates
command parsing and allows the use of an embedded controller. Also,
register programming provides an avenue for usersto control aV X module
with an alternate V X1 controller device and eliminate the need for using an
E1406A command module.

This appendix contains the information you need for register-based
programming. The contents include:

® Register Addressingo 97
® RegistersDescription i 101

Register Addressing

Register addresses for register-based devices are located in the upper 25%
of VXI A16 address space. Every V XI device (up to 256 devices) is
alocated a 32 word (64 byte) block of addresses. Figure B-1 on page 98
shows the register address |ocation within A16 asit might be mapped by an
embedded controller. Figure B-2 on page 99 shows the location of A16
address space in the E1406A command module.

When you are reading from or writing to aregister of the module, a
hexadecimal or decimal register address needsto be specified. Thisaddress
consists of abase address plus aregister offset:

Register Address = Base Address + Register Offsat

Base Address Thebase addressused in register-based programming depends on whether
the A16 address space is outside or inside the E1406A command module.

Appendix B Register-Based Programming 97

A16 Address Space
Outside the Command

When the E1406A command module is not part of your V X1bus system
(Figure B-1), the modul€’ s base address is computed as:t

Module
C000;, + (LADDRy, * 40y,)
- or (decimal)
49,152 + (LADDR * 64)
where C000y, (49,152) is the starting location of the VXI A16 addresses,
LADDR isthe modul€' slogical address, and 64 (40, is the number of
address bytes per register-based module. For example, the modul€’ sfactory
set logical addressis 112 (70y,). If this addressis not changed, the module
will have a base address of:
C000;, + (70y, * 40y,) = CO00y, + 1C00y, = DCOO,,
- or (decimal)
49,152 + (112 * 64) = 49,152 + 7168 = 56,320
Register o
Offset Description
3C, Pattern Recall Register
3A, NVRAM Data Register
38, NVRAM Address Register
FFFF. . .
FFFF, . .
QOO0 f--eeeemmeeeieee Register 2E Relay Control Register 16
Alb Address 2C, Relay Control Register 15
Address Spgxce
Space ° .
C000, . .
(49.152)
0000, 12, Relay Control Register 2
10, Relay Control Register 1
* Base Address = CO00, + (Logical Address * 64), oC Interrupt Selection Register
or :
— 49,152 + (Logical Address *64) 04, Status/Control Register
02, Device Type Register
Register Address = Base Address + Register Offset 00 ID Register

h

Figure B-1. Registers within A16 Address Space

1. Numberswith a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" arein

decimal format.

98 Register-Based Programming

Appendix B

A16 Address Space When the A16 address spaceisinside the Agilent E1406A command

Inside the Command module (Figure B-2), the module's base address is computed as:*

Module or Mainframe

1FC000,, + (LADDRy, * 40;)

- or (decimal)

2,080,768 + (LADDR * 64)

where 1FC000;, (2,080,768) isthe starting location of the register addresses,

LADDR isthe modul€ s logical address, and 64 (40;) is the number of
address bytes per register-based device. Again, the modul€’ s factory set

logical addressis 112 (70y,). If this address is not changed, the module will

have a base address of:

1FC000, + (70, * 40,)= 1FC000;, + 1C00;, = 1IFDCO0;,

- or (decimal)

2,080,768 + (112 * 64) = 2,080,768 + 1536 = 2,087,936

E1406
Address Map
FFFFFF,
200000,
EQO0QO, [-r-=rerrmrarmeranes
200000,
I 1700, ..
A4 Register
Address Al Address
Space Address - Space
: Space
1FC000,
200000, |-c-seeeeeeneeess a 1FO000,
1FO000, f---seseseeeeeeeenes
000000,
* Bose Address = 1FCO00, + (Logical Adarress * 64)
or
= 2,080,768 + (Logical Address *64)
Register Address = Base Address + Register Offset

| Register -
Offset Description
3C, Pattern Recall Register
3A, NVRAM Data Register
38, NVRAM Addlress Register
[] L]
[) L]
L] L)
2F Relay Control Register 16
2C, Relay Control Register 15
[) L]
[L
[) L]
12, Relay Control Register 2
10, Relay Control Register 1
. L]
[L]
L] L
0C, | Inferrupt Selection Regjister
04, Status/Control Register
02, Device Type Register
00, ID Register

Figure B-2. Registers within Command Module’s A16 Address Space

1. Numberswith a subscripted "h" are in hexadecimal format. Numbers without the subscripted "h" arein

decimal format.

Appendix B

Register-Based Programming

99

Register Offset Theregister offset isthe register’ slocation in the block of 64 address bytes.
For example, the modul€e's Status/Control Register has an offset of 04,

When you write acommand to this register, the offset is added to the base
address to form the register address:

DCOO}, + 04, = DCO4;,
1FDCO0;, + 04y, = 1FDCO4;,

- or (decimal)

56,320 + 4 = 56,324
2,087,936 + 4 = 2,087,940

100 Register-Based Programming Appendix B

Registers Description

The E8481A Matrix Switch module contains 23 registers as shown in

Table B-1. You can write to the writable (W) registers and read from the
readable (R) registers. This section contains a description of the registers
followed by a bit map of the registersin sequentia address order.

Table B-1. Module Registers

Registers Addr. Offset R/W Register Address
Manufacturer ID Register 00y, R base + 00y,
Device Type Register 02y, R base + 02,
Status/Control Register 04y, R/W base + 04y,
Interrupt Selection Register 0Cy, R/W base + 0Cy,
Relay Control Register (CH 0000-0007) 10, R/W base + 10y,
Relay Control Register (CH 0008-0015) 12, R/W base + 12,
Relay Control Register (CH 0100-0107) 14, R/W base + 14,
Relay Control Register (CH 0108-0115) 16, R/W base + 16y,
Relay Control Register (CH 0200-0207) 18, R/W base + 18y,
Relay Control Register (CH 0208-0215) 1A, R/W base + 1A,
Relay Control Register (CH 0300-0307) 1Cy, R/W base + 1Cy,
Relay Control Register (CH 0308-0315) 1E, R/W base + 1E,
Relay Control Register (CH 0016-0023) 20y, R/W base + 20y,
Relay Control Register (CH 0024-0031) 22y, R/W base + 22,
Relay Control Register (CH 0116-0123) 24y, R/W base + 24,
Relay Control Register (CH 0124-0131) 26y, R/W base + 26y,
Relay Control Register (CH 0216-0223) 28y R/W base + 28y,
Relay Control Register (CH 0224-0231) 2An R/W base + 2A
Relay Control Register (CH 0316-0323) 2Cy, R/W base + 2C;,
Relay Control Register (CH 0324-0331) 2Ey R/W base + 2E,,
NVRAM Address Register 38 R/W base + 38y,
NVRAM Data Register 3A, R/W base + 3A;
Pattern Recall Register 3C, R/W base + 3C;,

Appendix B

Register-Based Programming

101

NOTE Undefined register bits (shown as"x" in the Tables) return as"1" when the
register isread, and have no effect when written to.

ID Register TheManufacturer Identification Register is at offset address 00, Reading
the register returns FFFF}, indicating the manufacturer is Agilent
Technologies and the module is an A16 register-based device.

base + 00, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write X
Read Manufacturer ID - returns FFFFy, in Agilent Technologies A16 only register-based card

Device Type TheDevice Type Register isat offset address 02, Reading the register
Reg ister returns02D1; indicating that the device is an E8481A module.

base + 02}, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write X
Read 02D1;,

Status/Control The Status/Control Register is at offset address 04, It is used to control the

Reg ister module and inform the user of its status.

base + 04y, 15 14 | 13 | 12 | 11 | 10 9 8 7 6 51| 4 3 2 1 0
Write & X IRQ E/D X S Reset
Read P X MS X B IRQ E/D X 1 P X

a. Writing to the reserved bits ("x") will cause no action. We recommend writing "1" to these bits.
b. Reading from the reserved bits ("x") will return 85" 1". Do not rely on these value for card operation.

Reading the When reading the status/control register, the following bits are of

Status/Control Register importance:

® Self-test Passed (bit 2) - Used to inform the user of the self-test status.
"1" inthisfield indicates the module has successfully passed its
self-test, and "0" indicates that the module is either executing or has
failed its self-test.

® |nterrupt Satus (bit 6) - Used to inform the user of the interrupt
status. "0" indicates that the interrupt is enabled, and "1" indicates that
the interrupt is disabled. The interrupt generated after a channel has
been closed can be disabled.

102 Register-Based Programming Appendix B

® Busy (bit 7) - Used to inform the user of a busy condition. "0"
indicates that the module is busy, and "1" indicates that the module is
not busy. Each relay requires about 1 ms execution time during which
time the module is busy.

®* Modid Select (bit 14) - "0" in this bit indicates that the module is
selected by a high state on the P2 MODID line, and "1" indicatesit is
not selected viathe P2 MODID line.

Asan example, if aread of the Status Register (base + 04;,) returns "FFBF

(111112111101112112)", it indicates that the module is not busy (bit 7 = 1)
and the interrupt is enabled (bit 6 = 0).

Writing to the When writing to the status/control register, the following bits are of
Status/Control Register importance:

® Soft Reset (bit 0) - Writing a"1" to this bit will force the module to
reset (all channels open).

NOTE Whenwriting to the registersit is necessary to write "0" to bit O after the
reset has been performed before any other commands can be programmed
and executed. SCPI commands take care of this automatically.

® Sysfail Inhibit (bit 1) - Writing a"1" to this bit will disable the
module from driving the SY SFAIL line (all channelsopen). The Slot-0
modul e can detect the failed module viathisline.

® Interrupt Enable/Disable (bit 6) - Writing a"1" to this bit will
disable the module from sending an interrupt request (generated by
operating relays). Writing a"0" to this bit will enable the module’s
interrupt capability.

NOTE Typically, interrupts are only disabled to "peek-poke" a module. Refer to
your command module's operating manual before disabling the interrupt.

Appendix B Register-Based Programming 103

Interrupt Selection

Register

The Interrupt Selection Register is at offset address 0C,,. It is used to set the

interrupt level of the module and inform the user of the current interrupt
level of the module.

base + 0Cy,

15 | 14 | 13

12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Write

X Interrupt Level

Read

X Interrupt Level

NOTE

Relay Control

Registers

® You can set the interrupt level of the module by writing to I nterrupt
L evel Bits (bits 0-2) of the register. Writing bits 2-0 with 001, 010,
011, 100, 101, 110, or 111 will set theinterrupt level equal to interrupt
level 1 through 7. The highest interrupt level is 7, and the lowest level
is 1 (default value).

Changing theinterrupt priority level is not recommended. DO NOT change
it unless specially instructed to do so. Refer to the E1406A Command
Module User’s Manual for more details.

® Reading the register will return the current interrupt level of the
module. The returned value 001, 010, 011, 100, 101, 110, or 111in
Bits 2-0 corresponds to interrupt level 1 through 7.

There are sixteen relay control registers used to control the 128 channels of
the matrix module. They are:

* Relay Control Register for Channels 0000-0007 (base + 10y,)
*® Relay Control Register for Channels 0008-0015 (base + 12;,)
® Relay Control Register for Channels 0100-0107 (base + 14y,)
* Relay Control Register for Channels 0108-0115 (base + 16y,)
® Relay Control Register for Channels 0200-0207 (base + 18y))
*® Relay Control Register for Channels 0208-0215 (base + 1A;)
* Relay Control Register for Channels 0300-0307 (base + 1Cy)
*® Relay Control Register for Channels 0308-0315 (base + 1E;)
® Relay Control Register for Channels 0016-0023 (base + 20y,)
* Relay Control Register for Channels 0024-0031 (base + 22;,)
*® Relay Control Register for Channels 0116-0123 (base + 24y,
* Relay Control Register for Channels 0124-0131 (base + 26y,)
* Relay Control Register for Channels 0216-0223 (base + 28;))
*® Relay Control Register for Channels 0224-0231 (base + 2Ay)
® Relay Control Register for Channels 0316-0323 (base + 2Cy)
* Relay Control Register for Channels 0324-0331 (base + 2E;)

The Relay Control Registers bit definitions are listed as below:

104 Register-Based Programming Appendix B

Relay Control Register for Channels 0000 - 0007 (base + 10;)

base + 10, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0007 CHO0006 CHO0005 CHO0004 CHO0000 CHO0001 CHO0002 CHO0003
Read
Relay Control Register for Channels 0008 - 0015 (base + 12})
base + 12, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0015 CHO0014 CHO0013 CHO0012 CHO011 CHO0010 CHO0009 CHO0008
Read
Relay Control Register for Channels 0100 - 0107 (base + 14})
base + 14;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0107 CHO0106 CHO0105 CHO0104 CHO0100 CHO101 CHO0102 CHO0103
Read
Relay Control Register for Channels 0108 - 0115 (base + 16y,)
base + 16, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO115 CHO114 CHO113 CHO112 CHO111 CHO0110 CHO0109 CHO0108
Read
Relay Control Register for Channels 0200 - 0207 (base + 18;)
base + 18;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0207 CHO0206 CHO0205 CHO0204 CHO0200 CHO0201 CHO0202 CHO0203
Read
Relay Control Register for Channels 0208 - 0215 (base + 1A)
base + 1A, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0215 CHO0214 CHO0213 CHO0212 CHO0211 CHO0210 CHO0209 CH0208
Read
Relay Control Register for Channels 0300 - 0307 (base + 1Cy)
base + 1Cy, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0307 CHO0306 CHO0305 CHO0304 CHO0300 CHO0301 CH0302 CHO0303
Read

Appendix B

Register-Based Programming

105

Relay Control Register for Channels 0308 - 0315 (base + 1E})

base + 1E;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0315 CHO0314 CHO0313 CHO0312 CHO311 CHO0310 CHO0309 CHO0308
Read
Relay Control Register for Channels 0016 - 0023 (base + 20},
base + 20, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0023 CHO0022 CHO0021 CHO0020 CHO0016 CHO0017 CHO0018 CHO0019
Read
Relay Control Register for Channels 0024 - 0031 (base + 22;)
base +22;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0031 CHO0030 CHO0029 CHO0028 CHO0027 CHO0026 CHO0025 CHO0024
Read
Relay Control Register for Channels 0116 - 0123 (base + 24;)
base + 24, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0123 CHO0122 CHO0121 CHO0120 CHO116 CHO0117 CHO0118 CHO0119
Read
Relay Control Register for Channels 0124 - 0131 (base + 26y,
base + 26;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0131 CHO0130 CHO0129 CHO0128 CHO127 CHO0126 CHO0125 CHO0124
Read
Relay Control Register for Channels 0216 - 0223 (base + 28;))
base +28;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0223 CHO0222 CHO0221 CHO0220 CHO0216 CHO0217 CHO0218 CHO0219
Read
Relay Control Register for Channels 0224 - 0231 (base + 2Ay)
base + 2A,, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Write
CHO0231 CHO0230 CH0229 CHO0228 CHO0227 CHO0226 CHO0225 CHO0224
Read

106 Register-Based Programming

Appendix B

Relay Control Register for Channels 0316 - 0323 (base + 2Cy)

base + 2Cy, 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write

CHO0323 CHO0322 CHO0321 CHO0320 CHO0316 CHO0317 CHO0318 CHO0319
Read

Relay Control Register for Channels 0324 - 0331 (base + 2E;)

base + 2E;, | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write

CHO0331 CHO0330 CHO0329 CHO0328 CHO0327 CHO0326 CH0325 CHO0324
Read

All these relay control registers are readable/writable (R/W) registers. The
numbers shown in the register maps indicate the channel numbers of the
module. Writing to these Relay Control Registers (base +10;, to base + 2E;))
allows you to open or close the relay channels. Reading these registers
returns the current state of the relay channels.

® Each channel uses two bits for controlling the HI and LOW relays of
the channel. Writing "11" to these bits will close the related channel,
and writing "00" will open the channel. Writing "01" or "10" to these
bitswill cause wrong operation on the related channel. For example, to
close the relays on Row 0, Column 12, write"11" to bits 8 & 9 of the
register (base + 12;)).

® Reading the Relay Control Registers returns a hexadecimal number.
The bitsthat are"11" represent the related channel is closed. The bits
that are "00" indicate the related channel relay is open. Reading the
channel bit indicates to get the state of the relay driver circuit only. It
cannot detect a defectiverelay.

® \WWhen power-on or reset the matrix, all the channel relays are open and
when you read from these registers, all the bits are zero.

NVRAM Control Thereisan 8kB non-volatile RAM (NVRAM) on the PC board of the

Re g isters module where up to 511 channel patterns can be stored. Each pattern
includes all 128 channels state of the module requiring 16 bytes (128 bits)
continuous NVRAM spaceto store. The bit that is"1" representsthe related
channel isclosed. The bit that is"0" represents the related channel is open.
Table B-2 lists the address space for each pattern in the NVRAM. The bits
definition of each pattern is shown in Table B-3 and the numbers shown in
the table indicate the corresponding channel numbers of the module.

NOTE The pattern definition is based on the Relay Control Registers (base + 10,
to base + 2E;,). The contents of a Relay Control Register (one word)
corresponds to one byte data in a pattern.

Appendix B Register-Based Programming 107

Table B-2. Patterns Address in NVRAM

Addresses in NVRAM

Description

0000y, - 000F,

For storing Pattern 0 data.

0010y, - 001F;,

For storing Pattern 1 data.

1FEO, - 1FEF},

For storing Pattern 510 data.

1FFOy, - 1FFE,

Reserved

1FFFy For storing the module configuration mode: 4x
32 matrix or two independent 4x16 matrixes.
Table B-3. Bits Map of a Pattern
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 CH0007 | CHO006 | CHO005 | CH0004 | CHOO00O | CH0001 | CHO002 | CHO003
1 CH0015 | CH0014 | CHO013 | CH0012 | CHO011 | CHO010 | CHO009 | CH0008
2 CH0107 | CH0106 | CH0105 | CH0104 | CH0100 | CH0101 | CHO102 | CHO0103
3 CHO0115 | CHO0114 | CH0113 | CHO112 | CHO111 | CH0110 | CHO109 | CH0108
4 CH0207 | CH0206 | CH0205 | CH0204 | CH0200 | CH0201 | CH0202 | CH0203
5 CH0215 | CH0214 | CH0213 | CH0212 | CHO0211 | CH0210 | CH0209 | CH0208
6 CH0307 | CH0306 | CH0305 | CH0304 | CH0300 | CH0301 | CH0302 | CH0303
7 CH0315 | CH0314 | CHO0313 | CH0312 | CH0311 | CH0310 | CHO309 | CH0308
8 CH0023 | CH0022 | CH0021 | CH0020 | CHO016 | CH0017 | CHO018 | CH0019
9 CH0031 | CH0030 | CH0029 | CH0028 | CH0027 | CH0026 | CH0025 | CH0024
10 CH0123 | CH0122 | CHO121 | CH0120 | CHO116 | CHO117 | CH0118 | CHO119
11 CHO0131 | CH0130 | CHO0129 | CH0128 | CH0127 | CH0126 | CHO0125 | CHO0124
12 CH0223 | CH0222 | CH0221 | CH0220 | CH0216 | CH0217 | CH0218 | CH0219
13 CH0231 | CH0230 | CH0229 | CH0228 | CH0227 | CH0226 | CH0225 | CH0224
14 CH0323 | CH0322 | CH0321 | CH0320 | CH0316 | CH0317 | CHO318 | CH0319
15 CH0331 | CH0330 | CH0329 | CH0328 | CH0327 | CH0326 | CH0325 | CH0324
108 Register-Based Programming Appendix B

NVRAM Address

There are three registers used to access the 8 kB NVRAM. They are:

* NVRAM Address Register (base + 38;,)
* NVRAM Data Register (base + 3A;)
® Pattern Recall Register (base + 3C,)

The NVRAM Address Register is at offset address 38y,. It is used to specify

Register theaddress spaceinthe NVRAM to be accessed. Refer to Table B-2 for the
description of the addresses. This register can also be read back.
base +38, | 15 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 5 4 3 2 1 0
Write
0000 -1FFFy,
Read

NVRAM Data Register

TheNVRAM DataRegister isat offset address 3A,. It isused to set the state
pattern. The datawritten to thisregister will be stored into the corresponding
NVRAM location specified by the NVRAM Address Register (base + 38;,).
Reading this register returns the data stored in the NVRAM location
specified by the NVRAM Address Register (base + 38;,).

base + 3A;

15

14

13

12

11 10 9 8 7 6 5 4 3 2 1 0

Write

Read

Reserved 0- FFy

® Before writing data to this register, make sure the address space has
been set to the desired number inthe NVRAM Address Register (base
+ 38;,). Refer to Table B-2 for more details on the addresses
description.

® Setting State Pattern: Setting a state pattern consists of sixteen
writing to this register. Also, the desired address number must be
specified in the NVRAM Address Register (base + 38;,) before each
dataiswritten to the NVRAM Data Register. See Table B-3 for the
bits definition of a pattern.

® Setting M odule Function Mode: When "1FFF" is specified in the
NVRAM Address Register (base + 38y,), writing a"1" to the NVRAM
Data Register will set the module as an 4x32 matrix and writing a"0"
will set the module as two independent 4x16 matrixes. By default, the
moduleis configured as an 4x32 matrix.

Appendix B

Register-Based Programming 109

Pattern Recall Register

The Pattern Recall Register is at offset address 3C;,. Writing to this register
isused to specify apattern number to berecalled. Thevalid valueisbetween

0 and 510. Thisregister can also be read back.

base + 15 14 13 12 11 10 9 8 7 6 5 1 0
3Ch
Write
Pattern Number (0 - 510)
Read

® Therecall operation consists of a series of data fetching from the
specified NVRAM space, then expanding and putting these datainto
the corresponding Relay Control Registers. The module will set the
BUSY hit of the Status/Control Register to "0" during the whole
operation, and set the BUSY bit to "1" after al the relays are stable.

110 Register-Based Programming

Appendix B

Appendix C
Error Messages

Table C-1 lists the error messages associated with the E8481A Matrix
Switch module when programmed with SCPI commands. See the
appropriate mainframe manual for a complete list of error messages.

Table C-1. Error Messages

Number Error Message Potential Cause(s)

211 Trigger ignored Trigger received when scan not enabled. Trigger received
after scan complete. Trigger too fast.

-213 INIT Ignored Attempting to execute an INIT command when a scan is
already in progress.

-224 lllegal parameter value Attempting to execute a command with a parameter not
applicable to the command.

-310 System error Too many characters in the channel list expression.

1500 External trigger source Assigning an external trigger source to a switchbox when the

already allocated trigger source has already been assigned to another
switchbox.

2000 Invalid card number Addressing a module (card) in a switchbox that is not part of
the switchbox.

2001 Invalid channel number Attempting to address a channel of a module in a switchbox
that is not supported by the module (e.g., channel 99 of matrix
module).

2006 Command not supported | Sending a command to a module (card) in a switchbox that is

on this card unsupported by the module.

2008 Scan list not initialized Executing an INIT command without a channel list defined.

2009 Too many channels in Attempting to address more channels than available in the

channel list switchbox.

2011 Empty channel list Channel lists contain no valid channels.

2012 Invalid Channel Range Invalid channel(s) specified in SCAN <channel_list>
command. Attempting to begin scanning when no valid
channel list is defined.

2600 Function not supported Sending a command to a module (card) in a switchbox that is

on this card not supported by the module or switchbox.

2601 Missing parameter Sending a command requiring a channel_list without the
channel_list.

Appendix C

Error Messages 111

Notes:

112 Error Messages Appendix C

Index

A

A16 Address Space, 97 — 99
inside command module, 99
outside command module, 98

Abbreviated SCPI Commands, 54

ABORt Command, 56

Address
A16 address space, 97
base address, 97
channel address, 13
logical, 18, 98, 99
register address, 97
secondary, 13, 27

ARM subsystem, 57 — 58

ARM:COUNt, 57

ARM:COUNt?, 58

Attaching Terminal Module to the Matrix, 26

Available Terminal Modules, 21

B

Base Address, 97
Block Diagram, simplified schematic, 12
Boolean Command Parameter, 54

C

C language example programs
closing asingle channel, 15
closing multiple channels, 33
identifying the module, 29
scanning channels using Trig In/Out ports, 39
scanning channelswith TTL trigger, 44
setting module function mode, 31
system configuration, 27
using scan complete bit, 48
using state pattern, 35

Card Number, 14

Channél
addresses, 13
number, 15

closing channels, 15, 32, 34
Command Format

common, 53

SCPI, 53

Command Module
A16 address space inside the, 99
A16 address space outside the, 98
programming with, 27
Command Reference
|EEE 488.2 Common, 93
SCPI, 55— 91
Commands
[ROUTt:] subsystem, 70 — 80
abbreviated, 54
ABORt, 56
ARM subsystem, 57 — 58
DIAGnostic subsystem, 59 — 61
DISPlay subsystem, 62— 63
|EEE 488.2 common, 93
implied, 54
INITiate subsystem, 64 — 65

linking Common Commands with SCPI, 55

linking multiple SCPI commands, 55
OUTPut subsystem, 66 — 69
parameter types, 54
separator, 53
STATus subsystem, 81— 84
SY STem subsystem, 85— 87
TRIGger subsystem, 88 — 90
typesof, 53
Variable, 54
Common Commands
*CLS, 93
*ESE, 93
*ESE?, 93
*ESR?, 93
*IDN?, 93
*OPC, 93
*OPC?, 93
*RCL, 93
*RST, 93
*SAV, 93
*SRE, 93
*SRE?, 93
*STB?, 93
*TRG, 93
*TST?, 93
*WAI, 93
format, 53
Quick Reference, 93

Agilent E8481A User’s Manual Index

113

C (continued) Error

Configuration example program, 51
function mode, 12, 30, 72, 109 messages, list of, 111
interrupt priority, 19 numbers, list of, 111
logical address, 18 querying, 86
Connecting Event Register, 84
Terminal Module to the Matrix, 26 Examples _
User Inputs, 21 Closing a Single Channel, 15
Connectors Closing Multiple Channels, 32
Pinout diagram, 21 Identifying Module, 28
Screw Type Terminal, 22 Querying Errors, 51
SMB Type Termina, 23 Saving and Recalling Instrument State, 50
Scanning Channels Using Trig In/Out Ports, 37
Scanning Channels Using TTL Trigger, 42
D Setting module function mode, 30
declaration of conformity, 9 Synchronizing the Instruments, 51
Description Using State Pattern to Switch Channels, 34
general information, 11 Using the Scan Complete Bit, 47
Detecting Error Conditions, 51 External Trig In/Out, 37, 89
Device Type Register, 102
DIAGnostic subsystem, 59 — 61 E
DIAGnostic:INTerrupt[:LINe], 59 _ o
DIAGnostic:INTerrupt[:LINg]?, 60 Field Wiring, 24
DIAGnostic: TEST:SEEProm?, 61 Format
DIAGnostic:TEST[:RELay]?, 60 common command, 53
Disable SCPI command, 53
continuous scanning, 64 Front Panel connectors pinout, 21
ECL Trigger BusLine, 66 Function Mode ,
interrupts, 59, 103 command for querying, 72
Trig Out port, 67 command for setting, 72
TTL Trigger BusLine, 68 example programs, 30
Discrete Command Parameter, 54 factory setting, 12
DISPlay subsystem, 62 — 63 register-based setting, 109
DISPlay:MONitor:CARD, 62
DISPlay:MONitor:CARD?, 62 G
DISPIayMONItOI‘[STATe], 63 GrOUp Execute Trlgger (GET), 89

DISPlay:MONitor[:STATe]?, 63
documentation history, 8

H
E HTBasic language example programs
_ closing asingle channel, 15
ECL Trigger closing multiple channels, 32

guery state of, 67

: identifying the module, 28
setting, 66

guerying system errors, 51

Enable . . saving and recalling instrument state, 50
continuous scanning, 64 scanning channels using Trig In/Out ports, 38
ECL Trigger BusLine, 66 scanning channels with TTL trigger, 43
mt_errupts, 59, 103 setting module function mode, 30
Tng Ou_t port, 67 _ synchronizing instruments, 51
TTL Trigger BusLine, 68 system configuration, 27

using scan complete bit, 47

using state pattern, 34

114 Agilent E8481A User’s Manual Index

|
ID Register, 102

|EEE 488.2 Common Command Reference, 93

Implied Commands, 54
Initial Operation, 15
INITiate subsystem, 64 — 65
INITiate:CONTinuous, 64
INITiate:CONTinuous?, 65
INITiate[:IMMediate], 65
Installing module in a mainframe, 20
Instrument Definition, 13
Instruments, synchronizing, 51
interface address, 12
Interrupt

disabling, 59, 103

enabling, 59, 103

priority level, 19, 104
Interrupt Selection Register, 104

L

LADDR, 98, 99

Linking Commands, 55

Logical Address
factory setting, 18, 98, 99
register-based, 98, 99
setting, 18, 98, 99
switch location, 18

M

Mainframe
A16 address space, 98, 99
installing matrix, 20
Matrix
attaching terminal module, 26
Card Number, 14
channel addresses, 13
connectors pinout, 21
description, 11
front panel, 21
function Mode, 12
logical address, 18, 98, 99
schematic simplified, 11
specification, 95
Module Identification, 28
Multiple-module Switchbox, 14

N

Non-continuous Scanning, 64
non-volatile RAM, 11, 34, 107
Numeric Command Parameter, 54
NVRAM Control Registers, 107

@)
Offset, register, 100
opening channels, 15, 32, 34
Operation Status Register, 81
Scan Complete Bit, 81
Option 105, 23
Option 106, 22
Optional Command Parameter, 55
OUTPut subsystem, 66 — 69
OUTPut:ECLTrgn[:STATe], 66
OUTPUt:ECLTrgn[:STATe]?, 67
OUTPut: TTLTrgn[:STATe], 68
OUTPut: TTLTrgn[:STATe]?, 69
OUTPuUt[:EXTernal][:STATe], 67
OUTPUt[:EXTernal][:STATe]?, 68

P

Parameters
boolean, 54
discrete, 54
numeric, 54
optional, 55
types of (SCPI), 54
Patterns
addresses map in NVRAM, 108
Bits Map of a Pattern, 108
Registers
NVRAM Address Register, 109
NVRAM Data Register, 109
Pattern Recall Register, 110
switching channels with, 34
Programming
examples, 27
Register-based, 97
with SCPl commands, 13

Q

Querying commands, 49
Quick Reference
Common Command, 93
SCPI Command, 91

Agilent E8481A User’s Manual Index

115

R

Readable Registers, 101
Reading
Device Type Register, 102
ID Register, 102
Interrupt Selection Register, 104
NVRAM Address Register, 109
NVRAM Data Register, 109
Pattern Recall Register, 110
Relay Control Registers, 107
Status/Control Register, 102
Recalling and Saving States, 50
Register-based Programming, 97

Registers
addressing, 97
base address, 97

description, 101

Device Type, 102

Interrupt Selection, 104

Manufacturer Identification, 102

NVRAM Address, 109

NVRAM Control, 107

NVRAM Data, 109

offset, 100

Pattern Recall, 110

Relay Control, 104

Status/Control, 102
Relay Control Registers, 104
removing module from amainframe, 20
removing terminal block from the matrix, 26
Reset Conditions, 28
restricted rights statement, 7
[ROUTe]CLOSe, 70
[ROUTe]CLOSe?, 71
[ROUTe]FUNCtion, 72
[ROUTe]FUNCtion?, 72
[ROUTe]OPEN, 73
[ROUTe]OPEN?, 73
[ROUTe]PATTern:ACTivate, 74
[ROUTe]PATTern:ACTivate?, 75
[ROUTe]PATTern:CLOSe, 75
[ROUTe]PATTern:CLOSe?, 76
[ROUTe]PATTern:NUMBer, 77
[ROUTe]PATTern:-NUMBer?, 77
[ROUTe]PATTern:OPEN, 78
[ROUTe]PATTern:OPEN?, 79
[ROUTe]SCAN, 80
[ROUTt:] subsystem, 70 — 80

S

safety symbols, 8

Scan Complete Bit, 81

Scanning Channels, 37
Using Trig In/Out Ports, 37
Using TTL Trigger, 42

SCPI Command Format, 53

SCPI Command Quick Reference, 91

SCPI Command Reference, 55— 91
[ROUTe] subsystem, 70— 80
[ROUTe]CLOSe, 70
[ROUTe]CLOSe?, 71
[ROUTe]FUNCtion, 72
[ROUTe]FUNCtion?, 72
[ROUTe]OPEN, 73
[ROUTe]OPEN?, 73
[ROUTe]PATTern:ACTivate, 74
[ROUTe]PATTern:ACTivate?, 75
[ROUTE]PATTern:CLOSe, 75
[ROUTe]PATTern:CLOSe?, 76
[ROUTe]PATTern:NUMBer, 77
[ROUTe]PATTern:NUMBer?, 77
[ROUTe]PATTern:OPEN, 78
[ROUTe]PATTern:OPEN?, 79
[ROUTE]SCAN, 80
ABORt, 56
ARM subsystem, 57 — 58
ARM:COUNt, 57
ARM:COUNt?, 58
DIAGnostic:INTerrupt[:LIN€g], 59
DIAGnostic:INTerrupt[:LINg]?, 60
DIAGnostic: TEST:SEEProm?, 61
DIAGnostic: TEST[:RELays]?, 60
DIAGnostics subsystem, 59 — 61
DISPlay subsystem, 62 — 63
DISPlay:MONitor:CARD, 62
DISPlay:MONitor:CARD?, 62
DISPlay:MONitor[:STATe], 63
DISPlay:MONitor[:STATe]?, 63
INITiate subsystem, 64 — 65
INITiate:CONTinuous, 64
INITiate:CONTinuous?, 65
INITiate[:IMMediate], 65
OUTPut subsystem, 66 — 69
OUTPut:ECLTrgn[:STATe], 66
OUTPUt:ECLTrgn[:STATe]?, 67
OUTPut:TTLTrgn[:STATe], 68
OUTPut:TTLTrgn[:STATe]?, 69
OUTPuUt[:EXTernal][:STATe], 67
OUTPUt[:EXTerna][:STATe]?, 68

116 Agilent E8481A User’s Manual Index

S (continued)

SCPI Command Reference (continued)
STATus subsystem, 81— 84
STATus.OPERation: CONDition?, 83
STATus.OPERation:ENABIe, 83
STATus.OPERation:ENABIe?, 83
STATus.OPERation[:EVENL]?, 84
STATus.PRESet, 84
SY STem subsystem, 85— 87
SY STem:CDEScription?, 85
SYSTem:CPON, 85
SYSTem:CTYPe?, 86
SYSTem:ERRor?, 86
SYSTem:VERSion?, 87
TRIGger subsystem, 88 — 90
TRIGger:SOURce, 89
TRIGger:SOURce?, 90
TRIGger[:IMMediate], 88

Separator, command, 53

Single-module Switchbox, 14

Specifications, 95

State Patterns, using to switch channels, 34

STATus subsystem, 81— 84

Status System Register
Block Diagram, 82
Operation Status Register, 81
Standard Event Status Register, 81
Status Byte Register, 81

Status/Control Register, 102

STATus.OPERation:CONDition?, 83

STATus.OPERation:ENABIe, 83

STATus.OPERation:ENABIe?, 83

STATus.OPERation[:EVENTt]?, 84

STATus.PRESet, 84

Subsystems (SCPI Commands)
[ROUTe], 70— 80
ABORt, 56
ARM, 57— 58
DIAGnostic, 59 — 61
DISPlay, 62— 63
INITiate, 64 — 65
OUTPuUt, 66 — 69
STATus, 81— 84
SYSTem, 85— 87
TRIGger, 88— 90

Switchbox
multiple-module, 14
single-module, 14

switching channels, 15, 32, 34

Synchronizing the Instruments, 51

SY STem subsystem, 85— 87

SY STem:CDEScription?, 85
SYSTem:CPON, 85
SYSTem:CTYPe?, 86
SYSTem:ERRor?, 86
SYSTem:VERSion?, 87

T

Terminal Module
attaching to the matrix, 26
Option 105, 23
Option 106, 22
options, 21
removing from the matrix, 26
screw type, 22
SMB type, 23
wiring, 24
trigger sources, 89
TRIGger subsystem, 88 — 90
TRIGger:SOURce, 89
TRIGger:SOURce?, 90
TRIGger[:IMMediate], 88
TTL Trigger
query state of, 69
setting, 68
Types
command parameters, 54
commands, 53
error, 111

U
Using the Scan Complete Bit, 47

V
Variable Commands, 54

wW

WARNINGS, 8

warranty statement, 7

Wiring
Terminal Modules, 24

Writable Registers, 101

Writing to
Interrupt Selection Register, 104
NVRAM Address Register, 109
NVRAM Data Register, 109
Pattern Recall Register, 110
Relay Control Registers, 107
Status/Control Register, 103

Agilent E8481A User’s Manual Index

117

Notes:

118 Agilent E8481A User’s Manual Index

%, Agilent Technologies

Manual Part Number: E8481-90001
Printed in U.S.A. E0301

	Table of Contents
	AGILENT TECHNOLOGIES WARRANTY STATEMENT
	Safety Symbols
	WARNINGS
	Declaration of Conformity
	Chapter 1 Getting Started
	About This Chapter
	Agilent E8481A Module Description
	Simplified Schematic
	Function Modes
	Typical Configuration

	Instrument Definition
	Programming the Module
	Specifying SCPI Commands
	Channel Addresses
	Card Number
	Channel Number

	Initial Operation
	Example: Closing a Channel (HTBasic)
	Example: Closing a Channel (C/C++)

	Chapter 2 Configuring the Module
	About This Chapter
	Warnings and Cautions
	Setting the Logical Address
	Setting the Interrupt Priority
	Installing the Matrix Switch Module in a Mainframe
	Connecting User Inputs
	Connectors Pinout
	Screw Type Terminal Module
	SMB Type Terminal Module
	Wiring a Terminal Module
	Attaching a Terminal Module to the Matrix Module

	Chapter 3 Using the Matrix Module
	About This Chapter
	Power-On and Reset Conditions
	Module Identification
	Example: Identifying Module (HTBasic)
	Example: Identifying Module (C/C++)

	Setting Module Function Mode
	Example: Setting Function Mode (HTBasic)
	Example: Setting Function Mode (C/C++)

	Switching Channels
	Example: Closing Multiple Channels (HTBasic)
	Example: Closing Multiple Channels (C/C++)

	Using State Patterns to Switch Channels
	Example: Using a State Pattern to Switch Channels (HTBasic)
	Example: Using a State Pattern to Switch Channels (C/C++)

	Scanning Channels
	Example: Scanning Channels Using Trig In/Out Ports
	Programming with HTBasic
	Programming with C/C++

	Example: Scanning Channels Using TTL Trigger
	Programming with HTBasic
	Programming with C/C++

	Using the Scan Complete Bit
	Example: Using the Scan Complete Bit (HTBasic)
	Example: Using the Scan Complete Bit (C/C++)

	Querying the Matrix Module
	Recalling and Saving States
	Example: Saving and Recalling Instrument State (HTBasic)

	Detecting Error Conditions
	Example: Querying Errors (HTBasic)

	Synchronizing the Instruments
	Example: Synchronizing the Instruments (HTBasic)

	Chapter 4 Command Reference
	Using This Chapter
	Command Types
	Common Command Format
	SCPI Command Format
	Command Separator
	Abbreviated Commands
	Implied Commands
	Variable Commands
	Parameters

	Linking Commands

	SCPI Command Reference
	ABORt
	Subsystem Syntax
	Comments
	Example

	ARM
	Subsystem Syntax
	ARM:COUNt
	Parameters
	Comments
	Example

	ARM:COUNt?
	Parameters
	Comments
	Example

	DIAGnostic
	Subsystem Syntax
	DIAGnostic:INTerrupt[:LINe]
	Parameters
	Comments
	Example

	DIAGnostic:INTerrupt[:LINe]?
	Parameters
	Comments
	Example

	DIAGnostic:TEST[:RELays]?
	Comments
	Example

	DIAGnostic:TEST:SEEProm?
	Parameters
	Comments
	Example

	DISPlay
	Subsystem Syntax
	DISPlay:MONitor:CARD
	Parameters
	Comments
	Example

	DISPlay:MONitor:CARD?
	DISPlay:MONitor[:STATe]
	Parameters
	Comments
	Example

	DISPlay:MONitor[:STATe]?

	INITiate
	Subsystem Syntax
	INITiate:CONTinuous
	Parameters
	Comments
	Example

	INITiate:CONTinuous?
	Example

	INITiate[:IMMediate]
	Comments
	Example

	OUTPut
	Subsystem Syntax
	OUTPut:ECLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:ECLTrgn[:STATe]?
	Example

	OUTPut[:EXTernal][:STATe]
	Parameters
	Comments
	Example

	OUTPut[:EXTernal][:STATe]?
	Example

	OUTPut:TTLTrgn[:STATe]
	Parameters
	Comments
	Example

	OUTPut:TTLTrgn[:STATe]?
	Example

	[ROUTe:]
	Subsystem Syntax
	[ROUTe:]CLOSe
	Parameters
	Comments
	Example

	[ROUTe:]CLOSe?
	Comments
	Example

	[ROUTe:]FUNCtion
	Parameters
	Comments
	Example

	[ROUTe:]FUNCtion?
	Parameters
	Comments
	Example

	[ROUTe:]OPEN
	Parameters
	Comments
	Example

	[ROUTe:]OPEN?
	Comments
	Example

	[ROUTe:]PATTern:ACTivate
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:ACTivate?
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:CLOSe
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:CLOSe?
	Comments
	Example

	[ROUTe:]PATTern:NUMBer
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:NUMBer?
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:OPEN
	Parameters
	Comments
	Example

	[ROUTe:]PATTern:OPEN?
	Comments
	Example

	[ROUTe:]SCAN
	Parameters
	Comments
	Example

	STATus
	Subsystem Syntax
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle
	Parameters
	Comments
	Example

	STATus:OPERation:ENABle?
	Comments
	Example

	STATus:OPERation[:EVENt]?
	Comments
	Example

	STATus:PRESet

	SYSTem
	Subsystem Syntax
	SYSTem:CDEScription?
	Parameters
	Comments
	Example

	SYSTem:CPON
	Parameters
	Comments
	Example

	SYSTem:CTYPe?
	Parameters
	Comments
	Example

	SYSTem:ERRor?
	Comments
	Example

	SYSTem:VERSion?
	Comments
	Example

	TRIGger
	Subsystem Syntax
	TRIGger[:IMMediate]
	Comments
	Example

	TRIGger:SOURce
	Parameters
	Comments
	Example
	Example

	TRIGger:SOURce?
	Example

	SCPI Command Quick Reference
	IEEE 488.2 Common Command Reference

	Appendix A E8481A Specifications
	Appendix B Register-Based Programming
	About This Appendix
	Register Addressing
	Base Address
	A16 Address Space Outside the Command Module
	A16 Address Space Inside the Command Module or Mainframe

	Register Offset

	Registers Description
	ID Register
	Device Type Register
	Status/Control Register
	Reading the Status/Control Register
	Writing to the Status/Control Register

	Interrupt Selection Register
	Relay Control Registers
	NVRAM Control Registers
	NVRAM Address Register
	NVRAM Data Register
	Pattern Recall Register

	Appendix C Error Messages
	Index

